axmol/thirdparty/recast/DetourNavMesh.cpp

1585 lines
44 KiB
C++

//
// Copyright (c) 2009-2010 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include <float.h>
#include <string.h>
#include <stdio.h>
#include "DetourNavMesh.h"
#include "DetourNode.h"
#include "DetourCommon.h"
#include "DetourMath.h"
#include "DetourAlloc.h"
#include "DetourAssert.h"
#include <new>
inline bool overlapSlabs(const float* amin, const float* amax,
const float* bmin, const float* bmax,
const float px, const float py)
{
// Check for horizontal overlap.
// The segment is shrunken a little so that slabs which touch
// at end points are not connected.
const float minx = dtMax(amin[0]+px,bmin[0]+px);
const float maxx = dtMin(amax[0]-px,bmax[0]-px);
if (minx > maxx)
return false;
// Check vertical overlap.
const float ad = (amax[1]-amin[1]) / (amax[0]-amin[0]);
const float ak = amin[1] - ad*amin[0];
const float bd = (bmax[1]-bmin[1]) / (bmax[0]-bmin[0]);
const float bk = bmin[1] - bd*bmin[0];
const float aminy = ad*minx + ak;
const float amaxy = ad*maxx + ak;
const float bminy = bd*minx + bk;
const float bmaxy = bd*maxx + bk;
const float dmin = bminy - aminy;
const float dmax = bmaxy - amaxy;
// Crossing segments always overlap.
if (dmin*dmax < 0)
return true;
// Check for overlap at endpoints.
const float thr = dtSqr(py*2);
if (dmin*dmin <= thr || dmax*dmax <= thr)
return true;
return false;
}
static float getSlabCoord(const float* va, const int side)
{
if (side == 0 || side == 4)
return va[0];
else if (side == 2 || side == 6)
return va[2];
return 0;
}
static void calcSlabEndPoints(const float* va, const float* vb, float* bmin, float* bmax, const int side)
{
if (side == 0 || side == 4)
{
if (va[2] < vb[2])
{
bmin[0] = va[2];
bmin[1] = va[1];
bmax[0] = vb[2];
bmax[1] = vb[1];
}
else
{
bmin[0] = vb[2];
bmin[1] = vb[1];
bmax[0] = va[2];
bmax[1] = va[1];
}
}
else if (side == 2 || side == 6)
{
if (va[0] < vb[0])
{
bmin[0] = va[0];
bmin[1] = va[1];
bmax[0] = vb[0];
bmax[1] = vb[1];
}
else
{
bmin[0] = vb[0];
bmin[1] = vb[1];
bmax[0] = va[0];
bmax[1] = va[1];
}
}
}
inline int computeTileHash(int x, int y, const int mask)
{
const unsigned int h1 = 0x8da6b343; // Large multiplicative constants;
const unsigned int h2 = 0xd8163841; // here arbitrarily chosen primes
unsigned int n = h1 * x + h2 * y;
return (int)(n & mask);
}
inline unsigned int allocLink(dtMeshTile* tile)
{
if (tile->linksFreeList == DT_NULL_LINK)
return DT_NULL_LINK;
unsigned int link = tile->linksFreeList;
tile->linksFreeList = tile->links[link].next;
return link;
}
inline void freeLink(dtMeshTile* tile, unsigned int link)
{
tile->links[link].next = tile->linksFreeList;
tile->linksFreeList = link;
}
dtNavMesh* dtAllocNavMesh()
{
void* mem = dtAlloc(sizeof(dtNavMesh), DT_ALLOC_PERM);
if (!mem) return 0;
return new(mem) dtNavMesh;
}
/// @par
///
/// This function will only free the memory for tiles with the #DT_TILE_FREE_DATA
/// flag set.
void dtFreeNavMesh(dtNavMesh* navmesh)
{
if (!navmesh) return;
navmesh->~dtNavMesh();
dtFree(navmesh);
}
//////////////////////////////////////////////////////////////////////////////////////////
/**
@class dtNavMesh
The navigation mesh consists of one or more tiles defining three primary types of structural data:
A polygon mesh which defines most of the navigation graph. (See rcPolyMesh for its structure.)
A detail mesh used for determining surface height on the polygon mesh. (See rcPolyMeshDetail for its structure.)
Off-mesh connections, which define custom point-to-point edges within the navigation graph.
The general build process is as follows:
-# Create rcPolyMesh and rcPolyMeshDetail data using the Recast build pipeline.
-# Optionally, create off-mesh connection data.
-# Combine the source data into a dtNavMeshCreateParams structure.
-# Create a tile data array using dtCreateNavMeshData().
-# Allocate at dtNavMesh object and initialize it. (For single tile navigation meshes,
the tile data is loaded during this step.)
-# For multi-tile navigation meshes, load the tile data using dtNavMesh::addTile().
Notes:
- This class is usually used in conjunction with the dtNavMeshQuery class for pathfinding.
- Technically, all navigation meshes are tiled. A 'solo' mesh is simply a navigation mesh initialized
to have only a single tile.
- This class does not implement any asynchronous methods. So the ::dtStatus result of all methods will
always contain either a success or failure flag.
@see dtNavMeshQuery, dtCreateNavMeshData, dtNavMeshCreateParams, #dtAllocNavMesh, #dtFreeNavMesh
*/
dtNavMesh::dtNavMesh() :
m_tileWidth(0),
m_tileHeight(0),
m_maxTiles(0),
m_tileLutSize(0),
m_tileLutMask(0),
m_posLookup(0),
m_nextFree(0),
m_tiles(0)
{
#ifndef DT_POLYREF64
m_saltBits = 0;
m_tileBits = 0;
m_polyBits = 0;
#endif
memset(&m_params, 0, sizeof(dtNavMeshParams));
m_orig[0] = 0;
m_orig[1] = 0;
m_orig[2] = 0;
}
dtNavMesh::~dtNavMesh()
{
for (int i = 0; i < m_maxTiles; ++i)
{
if (m_tiles[i].flags & DT_TILE_FREE_DATA)
{
dtFree(m_tiles[i].data);
m_tiles[i].data = 0;
m_tiles[i].dataSize = 0;
}
}
dtFree(m_posLookup);
dtFree(m_tiles);
}
dtStatus dtNavMesh::init(const dtNavMeshParams* params)
{
memcpy(&m_params, params, sizeof(dtNavMeshParams));
dtVcopy(m_orig, params->orig);
m_tileWidth = params->tileWidth;
m_tileHeight = params->tileHeight;
// Init tiles
m_maxTiles = params->maxTiles;
m_tileLutSize = dtNextPow2(params->maxTiles/4);
if (!m_tileLutSize) m_tileLutSize = 1;
m_tileLutMask = m_tileLutSize-1;
m_tiles = (dtMeshTile*)dtAlloc(sizeof(dtMeshTile)*m_maxTiles, DT_ALLOC_PERM);
if (!m_tiles)
return DT_FAILURE | DT_OUT_OF_MEMORY;
m_posLookup = (dtMeshTile**)dtAlloc(sizeof(dtMeshTile*)*m_tileLutSize, DT_ALLOC_PERM);
if (!m_posLookup)
return DT_FAILURE | DT_OUT_OF_MEMORY;
memset(m_tiles, 0, sizeof(dtMeshTile)*m_maxTiles);
memset(m_posLookup, 0, sizeof(dtMeshTile*)*m_tileLutSize);
m_nextFree = 0;
for (int i = m_maxTiles-1; i >= 0; --i)
{
m_tiles[i].salt = 1;
m_tiles[i].next = m_nextFree;
m_nextFree = &m_tiles[i];
}
// Init ID generator values.
#ifndef DT_POLYREF64
m_tileBits = dtIlog2(dtNextPow2((unsigned int)params->maxTiles));
m_polyBits = dtIlog2(dtNextPow2((unsigned int)params->maxPolys));
// Only allow 31 salt bits, since the salt mask is calculated using 32bit uint and it will overflow.
m_saltBits = dtMin((unsigned int)31, 32 - m_tileBits - m_polyBits);
if (m_saltBits < 10)
return DT_FAILURE | DT_INVALID_PARAM;
#endif
return DT_SUCCESS;
}
dtStatus dtNavMesh::init(unsigned char* data, const int dataSize, const int flags)
{
// Make sure the data is in right format.
dtMeshHeader* header = (dtMeshHeader*)data;
if (header->magic != DT_NAVMESH_MAGIC)
return DT_FAILURE | DT_WRONG_MAGIC;
if (header->version != DT_NAVMESH_VERSION)
return DT_FAILURE | DT_WRONG_VERSION;
dtNavMeshParams params;
dtVcopy(params.orig, header->bmin);
params.tileWidth = header->bmax[0] - header->bmin[0];
params.tileHeight = header->bmax[2] - header->bmin[2];
params.maxTiles = 1;
params.maxPolys = header->polyCount;
dtStatus status = init(&params);
if (dtStatusFailed(status))
return status;
return addTile(data, dataSize, flags, 0, 0);
}
/// @par
///
/// @note The parameters are created automatically when the single tile
/// initialization is performed.
const dtNavMeshParams* dtNavMesh::getParams() const
{
return &m_params;
}
//////////////////////////////////////////////////////////////////////////////////////////
int dtNavMesh::findConnectingPolys(const float* va, const float* vb,
const dtMeshTile* tile, int side,
dtPolyRef* con, float* conarea, int maxcon) const
{
if (!tile) return 0;
float amin[2], amax[2];
calcSlabEndPoints(va, vb, amin, amax, side);
const float apos = getSlabCoord(va, side);
// Remove links pointing to 'side' and compact the links array.
float bmin[2], bmax[2];
unsigned short m = DT_EXT_LINK | (unsigned short)side;
int n = 0;
dtPolyRef base = getPolyRefBase(tile);
for (int i = 0; i < tile->header->polyCount; ++i)
{
dtPoly* poly = &tile->polys[i];
const int nv = poly->vertCount;
for (int j = 0; j < nv; ++j)
{
// Skip edges which do not point to the right side.
if (poly->neis[j] != m) continue;
const float* vc = &tile->verts[poly->verts[j]*3];
const float* vd = &tile->verts[poly->verts[(j+1) % nv]*3];
const float bpos = getSlabCoord(vc, side);
// Segments are not close enough.
if (dtAbs(apos-bpos) > 0.01f)
continue;
// Check if the segments touch.
calcSlabEndPoints(vc,vd, bmin,bmax, side);
if (!overlapSlabs(amin,amax, bmin,bmax, 0.01f, tile->header->walkableClimb)) continue;
// Add return value.
if (n < maxcon)
{
conarea[n*2+0] = dtMax(amin[0], bmin[0]);
conarea[n*2+1] = dtMin(amax[0], bmax[0]);
con[n] = base | (dtPolyRef)i;
n++;
}
break;
}
}
return n;
}
void dtNavMesh::unconnectLinks(dtMeshTile* tile, dtMeshTile* target)
{
if (!tile || !target) return;
const unsigned int targetNum = decodePolyIdTile(getTileRef(target));
for (int i = 0; i < tile->header->polyCount; ++i)
{
dtPoly* poly = &tile->polys[i];
unsigned int j = poly->firstLink;
unsigned int pj = DT_NULL_LINK;
while (j != DT_NULL_LINK)
{
if (decodePolyIdTile(tile->links[j].ref) == targetNum)
{
// Remove link.
unsigned int nj = tile->links[j].next;
if (pj == DT_NULL_LINK)
poly->firstLink = nj;
else
tile->links[pj].next = nj;
freeLink(tile, j);
j = nj;
}
else
{
// Advance
pj = j;
j = tile->links[j].next;
}
}
}
}
void dtNavMesh::connectExtLinks(dtMeshTile* tile, dtMeshTile* target, int side)
{
if (!tile) return;
// Connect border links.
for (int i = 0; i < tile->header->polyCount; ++i)
{
dtPoly* poly = &tile->polys[i];
// Create new links.
// unsigned short m = DT_EXT_LINK | (unsigned short)side;
const int nv = poly->vertCount;
for (int j = 0; j < nv; ++j)
{
// Skip non-portal edges.
if ((poly->neis[j] & DT_EXT_LINK) == 0)
continue;
const int dir = (int)(poly->neis[j] & 0xff);
if (side != -1 && dir != side)
continue;
// Create new links
const float* va = &tile->verts[poly->verts[j]*3];
const float* vb = &tile->verts[poly->verts[(j+1) % nv]*3];
dtPolyRef nei[4];
float neia[4*2];
int nnei = findConnectingPolys(va,vb, target, dtOppositeTile(dir), nei,neia,4);
for (int k = 0; k < nnei; ++k)
{
unsigned int idx = allocLink(tile);
if (idx != DT_NULL_LINK)
{
dtLink* link = &tile->links[idx];
link->ref = nei[k];
link->edge = (unsigned char)j;
link->side = (unsigned char)dir;
link->next = poly->firstLink;
poly->firstLink = idx;
// Compress portal limits to a byte value.
if (dir == 0 || dir == 4)
{
float tmin = (neia[k*2+0]-va[2]) / (vb[2]-va[2]);
float tmax = (neia[k*2+1]-va[2]) / (vb[2]-va[2]);
if (tmin > tmax)
dtSwap(tmin,tmax);
link->bmin = (unsigned char)(dtClamp(tmin, 0.0f, 1.0f)*255.0f);
link->bmax = (unsigned char)(dtClamp(tmax, 0.0f, 1.0f)*255.0f);
}
else if (dir == 2 || dir == 6)
{
float tmin = (neia[k*2+0]-va[0]) / (vb[0]-va[0]);
float tmax = (neia[k*2+1]-va[0]) / (vb[0]-va[0]);
if (tmin > tmax)
dtSwap(tmin,tmax);
link->bmin = (unsigned char)(dtClamp(tmin, 0.0f, 1.0f)*255.0f);
link->bmax = (unsigned char)(dtClamp(tmax, 0.0f, 1.0f)*255.0f);
}
}
}
}
}
}
void dtNavMesh::connectExtOffMeshLinks(dtMeshTile* tile, dtMeshTile* target, int side)
{
if (!tile) return;
// Connect off-mesh links.
// We are interested on links which land from target tile to this tile.
const unsigned char oppositeSide = (side == -1) ? 0xff : (unsigned char)dtOppositeTile(side);
for (int i = 0; i < target->header->offMeshConCount; ++i)
{
dtOffMeshConnection* targetCon = &target->offMeshCons[i];
if (targetCon->side != oppositeSide)
continue;
dtPoly* targetPoly = &target->polys[targetCon->poly];
// Skip off-mesh connections which start location could not be connected at all.
if (targetPoly->firstLink == DT_NULL_LINK)
continue;
const float halfExtents[3] = { targetCon->rad, target->header->walkableClimb, targetCon->rad };
// Find polygon to connect to.
const float* p = &targetCon->pos[3];
float nearestPt[3];
dtPolyRef ref = findNearestPolyInTile(tile, p, halfExtents, nearestPt);
if (!ref)
continue;
// findNearestPoly may return too optimistic results, further check to make sure.
if (dtSqr(nearestPt[0]-p[0])+dtSqr(nearestPt[2]-p[2]) > dtSqr(targetCon->rad))
continue;
// Make sure the location is on current mesh.
float* v = &target->verts[targetPoly->verts[1]*3];
dtVcopy(v, nearestPt);
// Link off-mesh connection to target poly.
unsigned int idx = allocLink(target);
if (idx != DT_NULL_LINK)
{
dtLink* link = &target->links[idx];
link->ref = ref;
link->edge = (unsigned char)1;
link->side = oppositeSide;
link->bmin = link->bmax = 0;
// Add to linked list.
link->next = targetPoly->firstLink;
targetPoly->firstLink = idx;
}
// Link target poly to off-mesh connection.
if (targetCon->flags & DT_OFFMESH_CON_BIDIR)
{
unsigned int tidx = allocLink(tile);
if (tidx != DT_NULL_LINK)
{
const unsigned short landPolyIdx = (unsigned short)decodePolyIdPoly(ref);
dtPoly* landPoly = &tile->polys[landPolyIdx];
dtLink* link = &tile->links[tidx];
link->ref = getPolyRefBase(target) | (dtPolyRef)(targetCon->poly);
link->edge = 0xff;
link->side = (unsigned char)(side == -1 ? 0xff : side);
link->bmin = link->bmax = 0;
// Add to linked list.
link->next = landPoly->firstLink;
landPoly->firstLink = tidx;
}
}
}
}
void dtNavMesh::connectIntLinks(dtMeshTile* tile)
{
if (!tile) return;
dtPolyRef base = getPolyRefBase(tile);
for (int i = 0; i < tile->header->polyCount; ++i)
{
dtPoly* poly = &tile->polys[i];
poly->firstLink = DT_NULL_LINK;
if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
continue;
// Build edge links backwards so that the links will be
// in the linked list from lowest index to highest.
for (int j = poly->vertCount-1; j >= 0; --j)
{
// Skip hard and non-internal edges.
if (poly->neis[j] == 0 || (poly->neis[j] & DT_EXT_LINK)) continue;
unsigned int idx = allocLink(tile);
if (idx != DT_NULL_LINK)
{
dtLink* link = &tile->links[idx];
link->ref = base | (dtPolyRef)(poly->neis[j]-1);
link->edge = (unsigned char)j;
link->side = 0xff;
link->bmin = link->bmax = 0;
// Add to linked list.
link->next = poly->firstLink;
poly->firstLink = idx;
}
}
}
}
void dtNavMesh::baseOffMeshLinks(dtMeshTile* tile)
{
if (!tile) return;
dtPolyRef base = getPolyRefBase(tile);
// Base off-mesh connection start points.
for (int i = 0; i < tile->header->offMeshConCount; ++i)
{
dtOffMeshConnection* con = &tile->offMeshCons[i];
dtPoly* poly = &tile->polys[con->poly];
const float halfExtents[3] = { con->rad, tile->header->walkableClimb, con->rad };
// Find polygon to connect to.
const float* p = &con->pos[0]; // First vertex
float nearestPt[3];
dtPolyRef ref = findNearestPolyInTile(tile, p, halfExtents, nearestPt);
if (!ref) continue;
// findNearestPoly may return too optimistic results, further check to make sure.
if (dtSqr(nearestPt[0]-p[0])+dtSqr(nearestPt[2]-p[2]) > dtSqr(con->rad))
continue;
// Make sure the location is on current mesh.
float* v = &tile->verts[poly->verts[0]*3];
dtVcopy(v, nearestPt);
// Link off-mesh connection to target poly.
unsigned int idx = allocLink(tile);
if (idx != DT_NULL_LINK)
{
dtLink* link = &tile->links[idx];
link->ref = ref;
link->edge = (unsigned char)0;
link->side = 0xff;
link->bmin = link->bmax = 0;
// Add to linked list.
link->next = poly->firstLink;
poly->firstLink = idx;
}
// Start end-point is always connect back to off-mesh connection.
unsigned int tidx = allocLink(tile);
if (tidx != DT_NULL_LINK)
{
const unsigned short landPolyIdx = (unsigned short)decodePolyIdPoly(ref);
dtPoly* landPoly = &tile->polys[landPolyIdx];
dtLink* link = &tile->links[tidx];
link->ref = base | (dtPolyRef)(con->poly);
link->edge = 0xff;
link->side = 0xff;
link->bmin = link->bmax = 0;
// Add to linked list.
link->next = landPoly->firstLink;
landPoly->firstLink = tidx;
}
}
}
namespace
{
template<bool onlyBoundary>
void closestPointOnDetailEdges(const dtMeshTile* tile, const dtPoly* poly, const float* pos, float* closest)
{
const unsigned int ip = (unsigned int)(poly - tile->polys);
const dtPolyDetail* pd = &tile->detailMeshes[ip];
float dmin = FLT_MAX;
float tmin = 0;
const float* pmin = 0;
const float* pmax = 0;
for (int i = 0; i < pd->triCount; i++)
{
const unsigned char* tris = &tile->detailTris[(pd->triBase + i) * 4];
const int ANY_BOUNDARY_EDGE =
(DT_DETAIL_EDGE_BOUNDARY << 0) |
(DT_DETAIL_EDGE_BOUNDARY << 2) |
(DT_DETAIL_EDGE_BOUNDARY << 4);
if (onlyBoundary && (tris[3] & ANY_BOUNDARY_EDGE) == 0)
continue;
const float* v[3];
for (int j = 0; j < 3; ++j)
{
if (tris[j] < poly->vertCount)
v[j] = &tile->verts[poly->verts[tris[j]] * 3];
else
v[j] = &tile->detailVerts[(pd->vertBase + (tris[j] - poly->vertCount)) * 3];
}
for (int k = 0, j = 2; k < 3; j = k++)
{
if ((dtGetDetailTriEdgeFlags(tris[3], j) & DT_DETAIL_EDGE_BOUNDARY) == 0 &&
(onlyBoundary || tris[j] < tris[k]))
{
// Only looking at boundary edges and this is internal, or
// this is an inner edge that we will see again or have already seen.
continue;
}
float t;
float d = dtDistancePtSegSqr2D(pos, v[j], v[k], t);
if (d < dmin)
{
dmin = d;
tmin = t;
pmin = v[j];
pmax = v[k];
}
}
}
dtVlerp(closest, pmin, pmax, tmin);
}
}
bool dtNavMesh::getPolyHeight(const dtMeshTile* tile, const dtPoly* poly, const float* pos, float* height) const
{
// Off-mesh connections do not have detail polys and getting height
// over them does not make sense.
if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
return false;
const unsigned int ip = (unsigned int)(poly - tile->polys);
const dtPolyDetail* pd = &tile->detailMeshes[ip];
float verts[DT_VERTS_PER_POLYGON*3];
const int nv = poly->vertCount;
for (int i = 0; i < nv; ++i)
dtVcopy(&verts[i*3], &tile->verts[poly->verts[i]*3]);
if (!dtPointInPolygon(pos, verts, nv))
return false;
if (!height)
return true;
// Find height at the location.
for (int j = 0; j < pd->triCount; ++j)
{
const unsigned char* t = &tile->detailTris[(pd->triBase+j)*4];
const float* v[3];
for (int k = 0; k < 3; ++k)
{
if (t[k] < poly->vertCount)
v[k] = &tile->verts[poly->verts[t[k]]*3];
else
v[k] = &tile->detailVerts[(pd->vertBase+(t[k]-poly->vertCount))*3];
}
float h;
if (dtClosestHeightPointTriangle(pos, v[0], v[1], v[2], h))
{
*height = h;
return true;
}
}
// If all triangle checks failed above (can happen with degenerate triangles
// or larger floating point values) the point is on an edge, so just select
// closest. This should almost never happen so the extra iteration here is
// ok.
float closest[3];
closestPointOnDetailEdges<false>(tile, poly, pos, closest);
*height = closest[1];
return true;
}
void dtNavMesh::closestPointOnPoly(dtPolyRef ref, const float* pos, float* closest, bool* posOverPoly) const
{
const dtMeshTile* tile = 0;
const dtPoly* poly = 0;
getTileAndPolyByRefUnsafe(ref, &tile, &poly);
dtVcopy(closest, pos);
if (getPolyHeight(tile, poly, pos, &closest[1]))
{
if (posOverPoly)
*posOverPoly = true;
return;
}
if (posOverPoly)
*posOverPoly = false;
// Off-mesh connections don't have detail polygons.
if (poly->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
{
const float* v0 = &tile->verts[poly->verts[0]*3];
const float* v1 = &tile->verts[poly->verts[1]*3];
float t;
dtDistancePtSegSqr2D(pos, v0, v1, t);
dtVlerp(closest, v0, v1, t);
return;
}
// Outside poly that is not an offmesh connection.
closestPointOnDetailEdges<true>(tile, poly, pos, closest);
}
dtPolyRef dtNavMesh::findNearestPolyInTile(const dtMeshTile* tile,
const float* center, const float* halfExtents,
float* nearestPt) const
{
float bmin[3], bmax[3];
dtVsub(bmin, center, halfExtents);
dtVadd(bmax, center, halfExtents);
// Get nearby polygons from proximity grid.
dtPolyRef polys[128];
int polyCount = queryPolygonsInTile(tile, bmin, bmax, polys, 128);
// Find nearest polygon amongst the nearby polygons.
dtPolyRef nearest = 0;
float nearestDistanceSqr = FLT_MAX;
for (int i = 0; i < polyCount; ++i)
{
dtPolyRef ref = polys[i];
float closestPtPoly[3];
float diff[3];
bool posOverPoly = false;
float d;
closestPointOnPoly(ref, center, closestPtPoly, &posOverPoly);
// If a point is directly over a polygon and closer than
// climb height, favor that instead of straight line nearest point.
dtVsub(diff, center, closestPtPoly);
if (posOverPoly)
{
d = dtAbs(diff[1]) - tile->header->walkableClimb;
d = d > 0 ? d*d : 0;
}
else
{
d = dtVlenSqr(diff);
}
if (d < nearestDistanceSqr)
{
dtVcopy(nearestPt, closestPtPoly);
nearestDistanceSqr = d;
nearest = ref;
}
}
return nearest;
}
int dtNavMesh::queryPolygonsInTile(const dtMeshTile* tile, const float* qmin, const float* qmax,
dtPolyRef* polys, const int maxPolys) const
{
if (tile->bvTree)
{
const dtBVNode* node = &tile->bvTree[0];
const dtBVNode* end = &tile->bvTree[tile->header->bvNodeCount];
const float* tbmin = tile->header->bmin;
const float* tbmax = tile->header->bmax;
const float qfac = tile->header->bvQuantFactor;
// Calculate quantized box
unsigned short bmin[3], bmax[3];
// dtClamp query box to world box.
float minx = dtClamp(qmin[0], tbmin[0], tbmax[0]) - tbmin[0];
float miny = dtClamp(qmin[1], tbmin[1], tbmax[1]) - tbmin[1];
float minz = dtClamp(qmin[2], tbmin[2], tbmax[2]) - tbmin[2];
float maxx = dtClamp(qmax[0], tbmin[0], tbmax[0]) - tbmin[0];
float maxy = dtClamp(qmax[1], tbmin[1], tbmax[1]) - tbmin[1];
float maxz = dtClamp(qmax[2], tbmin[2], tbmax[2]) - tbmin[2];
// Quantize
bmin[0] = (unsigned short)(qfac * minx) & 0xfffe;
bmin[1] = (unsigned short)(qfac * miny) & 0xfffe;
bmin[2] = (unsigned short)(qfac * minz) & 0xfffe;
bmax[0] = (unsigned short)(qfac * maxx + 1) | 1;
bmax[1] = (unsigned short)(qfac * maxy + 1) | 1;
bmax[2] = (unsigned short)(qfac * maxz + 1) | 1;
// Traverse tree
dtPolyRef base = getPolyRefBase(tile);
int n = 0;
while (node < end)
{
const bool overlap = dtOverlapQuantBounds(bmin, bmax, node->bmin, node->bmax);
const bool isLeafNode = node->i >= 0;
if (isLeafNode && overlap)
{
if (n < maxPolys)
polys[n++] = base | (dtPolyRef)node->i;
}
if (overlap || isLeafNode)
node++;
else
{
const int escapeIndex = -node->i;
node += escapeIndex;
}
}
return n;
}
else
{
float bmin[3], bmax[3];
int n = 0;
dtPolyRef base = getPolyRefBase(tile);
for (int i = 0; i < tile->header->polyCount; ++i)
{
dtPoly* p = &tile->polys[i];
// Do not return off-mesh connection polygons.
if (p->getType() == DT_POLYTYPE_OFFMESH_CONNECTION)
continue;
// Calc polygon bounds.
const float* v = &tile->verts[p->verts[0]*3];
dtVcopy(bmin, v);
dtVcopy(bmax, v);
for (int j = 1; j < p->vertCount; ++j)
{
v = &tile->verts[p->verts[j]*3];
dtVmin(bmin, v);
dtVmax(bmax, v);
}
if (dtOverlapBounds(qmin,qmax, bmin,bmax))
{
if (n < maxPolys)
polys[n++] = base | (dtPolyRef)i;
}
}
return n;
}
}
/// @par
///
/// The add operation will fail if the data is in the wrong format, the allocated tile
/// space is full, or there is a tile already at the specified reference.
///
/// The lastRef parameter is used to restore a tile with the same tile
/// reference it had previously used. In this case the #dtPolyRef's for the
/// tile will be restored to the same values they were before the tile was
/// removed.
///
/// The nav mesh assumes exclusive access to the data passed and will make
/// changes to the dynamic portion of the data. For that reason the data
/// should not be reused in other nav meshes until the tile has been successfully
/// removed from this nav mesh.
///
/// @see dtCreateNavMeshData, #removeTile
dtStatus dtNavMesh::addTile(unsigned char* data, int dataSize, int flags,
dtTileRef lastRef, dtTileRef* result)
{
// Make sure the data is in right format.
dtMeshHeader* header = (dtMeshHeader*)data;
if (header->magic != DT_NAVMESH_MAGIC)
return DT_FAILURE | DT_WRONG_MAGIC;
if (header->version != DT_NAVMESH_VERSION)
return DT_FAILURE | DT_WRONG_VERSION;
// Make sure the location is free.
if (getTileAt(header->x, header->y, header->layer))
return DT_FAILURE | DT_ALREADY_OCCUPIED;
// Allocate a tile.
dtMeshTile* tile = 0;
if (!lastRef)
{
if (m_nextFree)
{
tile = m_nextFree;
m_nextFree = tile->next;
tile->next = 0;
}
}
else
{
// Try to relocate the tile to specific index with same salt.
int tileIndex = (int)decodePolyIdTile((dtPolyRef)lastRef);
if (tileIndex >= m_maxTiles)
return DT_FAILURE | DT_OUT_OF_MEMORY;
// Try to find the specific tile id from the free list.
dtMeshTile* target = &m_tiles[tileIndex];
dtMeshTile* prev = 0;
tile = m_nextFree;
while (tile && tile != target)
{
prev = tile;
tile = tile->next;
}
// Could not find the correct location.
if (tile != target)
return DT_FAILURE | DT_OUT_OF_MEMORY;
// Remove from freelist
if (!prev)
m_nextFree = tile->next;
else
prev->next = tile->next;
// Restore salt.
tile->salt = decodePolyIdSalt((dtPolyRef)lastRef);
}
// Make sure we could allocate a tile.
if (!tile)
return DT_FAILURE | DT_OUT_OF_MEMORY;
// Insert tile into the position lut.
int h = computeTileHash(header->x, header->y, m_tileLutMask);
tile->next = m_posLookup[h];
m_posLookup[h] = tile;
// Patch header pointers.
const int headerSize = dtAlign4(sizeof(dtMeshHeader));
const int vertsSize = dtAlign4(sizeof(float)*3*header->vertCount);
const int polysSize = dtAlign4(sizeof(dtPoly)*header->polyCount);
const int linksSize = dtAlign4(sizeof(dtLink)*(header->maxLinkCount));
const int detailMeshesSize = dtAlign4(sizeof(dtPolyDetail)*header->detailMeshCount);
const int detailVertsSize = dtAlign4(sizeof(float)*3*header->detailVertCount);
const int detailTrisSize = dtAlign4(sizeof(unsigned char)*4*header->detailTriCount);
const int bvtreeSize = dtAlign4(sizeof(dtBVNode)*header->bvNodeCount);
const int offMeshLinksSize = dtAlign4(sizeof(dtOffMeshConnection)*header->offMeshConCount);
unsigned char* d = data + headerSize;
tile->verts = dtGetThenAdvanceBufferPointer<float>(d, vertsSize);
tile->polys = dtGetThenAdvanceBufferPointer<dtPoly>(d, polysSize);
tile->links = dtGetThenAdvanceBufferPointer<dtLink>(d, linksSize);
tile->detailMeshes = dtGetThenAdvanceBufferPointer<dtPolyDetail>(d, detailMeshesSize);
tile->detailVerts = dtGetThenAdvanceBufferPointer<float>(d, detailVertsSize);
tile->detailTris = dtGetThenAdvanceBufferPointer<unsigned char>(d, detailTrisSize);
tile->bvTree = dtGetThenAdvanceBufferPointer<dtBVNode>(d, bvtreeSize);
tile->offMeshCons = dtGetThenAdvanceBufferPointer<dtOffMeshConnection>(d, offMeshLinksSize);
// If there are no items in the bvtree, reset the tree pointer.
if (!bvtreeSize)
tile->bvTree = 0;
// Build links freelist
tile->linksFreeList = 0;
tile->links[header->maxLinkCount-1].next = DT_NULL_LINK;
for (int i = 0; i < header->maxLinkCount-1; ++i)
tile->links[i].next = i+1;
// Init tile.
tile->header = header;
tile->data = data;
tile->dataSize = dataSize;
tile->flags = flags;
connectIntLinks(tile);
// Base off-mesh connections to their starting polygons and connect connections inside the tile.
baseOffMeshLinks(tile);
connectExtOffMeshLinks(tile, tile, -1);
// Create connections with neighbour tiles.
static const int MAX_NEIS = 32;
dtMeshTile* neis[MAX_NEIS];
int nneis;
// Connect with layers in current tile.
nneis = getTilesAt(header->x, header->y, neis, MAX_NEIS);
for (int j = 0; j < nneis; ++j)
{
if (neis[j] == tile)
continue;
connectExtLinks(tile, neis[j], -1);
connectExtLinks(neis[j], tile, -1);
connectExtOffMeshLinks(tile, neis[j], -1);
connectExtOffMeshLinks(neis[j], tile, -1);
}
// Connect with neighbour tiles.
for (int i = 0; i < 8; ++i)
{
nneis = getNeighbourTilesAt(header->x, header->y, i, neis, MAX_NEIS);
for (int j = 0; j < nneis; ++j)
{
connectExtLinks(tile, neis[j], i);
connectExtLinks(neis[j], tile, dtOppositeTile(i));
connectExtOffMeshLinks(tile, neis[j], i);
connectExtOffMeshLinks(neis[j], tile, dtOppositeTile(i));
}
}
if (result)
*result = getTileRef(tile);
return DT_SUCCESS;
}
const dtMeshTile* dtNavMesh::getTileAt(const int x, const int y, const int layer) const
{
// Find tile based on hash.
int h = computeTileHash(x,y,m_tileLutMask);
dtMeshTile* tile = m_posLookup[h];
while (tile)
{
if (tile->header &&
tile->header->x == x &&
tile->header->y == y &&
tile->header->layer == layer)
{
return tile;
}
tile = tile->next;
}
return 0;
}
int dtNavMesh::getNeighbourTilesAt(const int x, const int y, const int side, dtMeshTile** tiles, const int maxTiles) const
{
int nx = x, ny = y;
switch (side)
{
case 0: nx++; break;
case 1: nx++; ny++; break;
case 2: ny++; break;
case 3: nx--; ny++; break;
case 4: nx--; break;
case 5: nx--; ny--; break;
case 6: ny--; break;
case 7: nx++; ny--; break;
};
return getTilesAt(nx, ny, tiles, maxTiles);
}
int dtNavMesh::getTilesAt(const int x, const int y, dtMeshTile** tiles, const int maxTiles) const
{
int n = 0;
// Find tile based on hash.
int h = computeTileHash(x,y,m_tileLutMask);
dtMeshTile* tile = m_posLookup[h];
while (tile)
{
if (tile->header &&
tile->header->x == x &&
tile->header->y == y)
{
if (n < maxTiles)
tiles[n++] = tile;
}
tile = tile->next;
}
return n;
}
/// @par
///
/// This function will not fail if the tiles array is too small to hold the
/// entire result set. It will simply fill the array to capacity.
int dtNavMesh::getTilesAt(const int x, const int y, dtMeshTile const** tiles, const int maxTiles) const
{
int n = 0;
// Find tile based on hash.
int h = computeTileHash(x,y,m_tileLutMask);
dtMeshTile* tile = m_posLookup[h];
while (tile)
{
if (tile->header &&
tile->header->x == x &&
tile->header->y == y)
{
if (n < maxTiles)
tiles[n++] = tile;
}
tile = tile->next;
}
return n;
}
dtTileRef dtNavMesh::getTileRefAt(const int x, const int y, const int layer) const
{
// Find tile based on hash.
int h = computeTileHash(x,y,m_tileLutMask);
dtMeshTile* tile = m_posLookup[h];
while (tile)
{
if (tile->header &&
tile->header->x == x &&
tile->header->y == y &&
tile->header->layer == layer)
{
return getTileRef(tile);
}
tile = tile->next;
}
return 0;
}
const dtMeshTile* dtNavMesh::getTileByRef(dtTileRef ref) const
{
if (!ref)
return 0;
unsigned int tileIndex = decodePolyIdTile((dtPolyRef)ref);
unsigned int tileSalt = decodePolyIdSalt((dtPolyRef)ref);
if ((int)tileIndex >= m_maxTiles)
return 0;
const dtMeshTile* tile = &m_tiles[tileIndex];
if (tile->salt != tileSalt)
return 0;
return tile;
}
int dtNavMesh::getMaxTiles() const
{
return m_maxTiles;
}
dtMeshTile* dtNavMesh::getTile(int i)
{
return &m_tiles[i];
}
const dtMeshTile* dtNavMesh::getTile(int i) const
{
return &m_tiles[i];
}
void dtNavMesh::calcTileLoc(const float* pos, int* tx, int* ty) const
{
*tx = (int)floorf((pos[0]-m_orig[0]) / m_tileWidth);
*ty = (int)floorf((pos[2]-m_orig[2]) / m_tileHeight);
}
dtStatus dtNavMesh::getTileAndPolyByRef(const dtPolyRef ref, const dtMeshTile** tile, const dtPoly** poly) const
{
if (!ref) return DT_FAILURE;
unsigned int salt, it, ip;
decodePolyId(ref, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM;
if (ip >= (unsigned int)m_tiles[it].header->polyCount) return DT_FAILURE | DT_INVALID_PARAM;
*tile = &m_tiles[it];
*poly = &m_tiles[it].polys[ip];
return DT_SUCCESS;
}
/// @par
///
/// @warning Only use this function if it is known that the provided polygon
/// reference is valid. This function is faster than #getTileAndPolyByRef, but
/// it does not validate the reference.
void dtNavMesh::getTileAndPolyByRefUnsafe(const dtPolyRef ref, const dtMeshTile** tile, const dtPoly** poly) const
{
unsigned int salt, it, ip;
decodePolyId(ref, salt, it, ip);
*tile = &m_tiles[it];
*poly = &m_tiles[it].polys[ip];
}
bool dtNavMesh::isValidPolyRef(dtPolyRef ref) const
{
if (!ref) return false;
unsigned int salt, it, ip;
decodePolyId(ref, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return false;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return false;
if (ip >= (unsigned int)m_tiles[it].header->polyCount) return false;
return true;
}
/// @par
///
/// This function returns the data for the tile so that, if desired,
/// it can be added back to the navigation mesh at a later point.
///
/// @see #addTile
dtStatus dtNavMesh::removeTile(dtTileRef ref, unsigned char** data, int* dataSize)
{
if (!ref)
return DT_FAILURE | DT_INVALID_PARAM;
unsigned int tileIndex = decodePolyIdTile((dtPolyRef)ref);
unsigned int tileSalt = decodePolyIdSalt((dtPolyRef)ref);
if ((int)tileIndex >= m_maxTiles)
return DT_FAILURE | DT_INVALID_PARAM;
dtMeshTile* tile = &m_tiles[tileIndex];
if (tile->salt != tileSalt)
return DT_FAILURE | DT_INVALID_PARAM;
// Remove tile from hash lookup.
int h = computeTileHash(tile->header->x,tile->header->y,m_tileLutMask);
dtMeshTile* prev = 0;
dtMeshTile* cur = m_posLookup[h];
while (cur)
{
if (cur == tile)
{
if (prev)
prev->next = cur->next;
else
m_posLookup[h] = cur->next;
break;
}
prev = cur;
cur = cur->next;
}
// Remove connections to neighbour tiles.
static const int MAX_NEIS = 32;
dtMeshTile* neis[MAX_NEIS];
int nneis;
// Disconnect from other layers in current tile.
nneis = getTilesAt(tile->header->x, tile->header->y, neis, MAX_NEIS);
for (int j = 0; j < nneis; ++j)
{
if (neis[j] == tile) continue;
unconnectLinks(neis[j], tile);
}
// Disconnect from neighbour tiles.
for (int i = 0; i < 8; ++i)
{
nneis = getNeighbourTilesAt(tile->header->x, tile->header->y, i, neis, MAX_NEIS);
for (int j = 0; j < nneis; ++j)
unconnectLinks(neis[j], tile);
}
// Reset tile.
if (tile->flags & DT_TILE_FREE_DATA)
{
// Owns data
dtFree(tile->data);
tile->data = 0;
tile->dataSize = 0;
if (data) *data = 0;
if (dataSize) *dataSize = 0;
}
else
{
if (data) *data = tile->data;
if (dataSize) *dataSize = tile->dataSize;
}
tile->header = 0;
tile->flags = 0;
tile->linksFreeList = 0;
tile->polys = 0;
tile->verts = 0;
tile->links = 0;
tile->detailMeshes = 0;
tile->detailVerts = 0;
tile->detailTris = 0;
tile->bvTree = 0;
tile->offMeshCons = 0;
// Update salt, salt should never be zero.
#ifdef DT_POLYREF64
tile->salt = (tile->salt+1) & ((1<<DT_SALT_BITS)-1);
#else
tile->salt = (tile->salt+1) & ((1<<m_saltBits)-1);
#endif
if (tile->salt == 0)
tile->salt++;
// Add to free list.
tile->next = m_nextFree;
m_nextFree = tile;
return DT_SUCCESS;
}
dtTileRef dtNavMesh::getTileRef(const dtMeshTile* tile) const
{
if (!tile) return 0;
const unsigned int it = (unsigned int)(tile - m_tiles);
return (dtTileRef)encodePolyId(tile->salt, it, 0);
}
/// @par
///
/// Example use case:
/// @code
///
/// const dtPolyRef base = navmesh->getPolyRefBase(tile);
/// for (int i = 0; i < tile->header->polyCount; ++i)
/// {
/// const dtPoly* p = &tile->polys[i];
/// const dtPolyRef ref = base | (dtPolyRef)i;
///
/// // Use the reference to access the polygon data.
/// }
/// @endcode
dtPolyRef dtNavMesh::getPolyRefBase(const dtMeshTile* tile) const
{
if (!tile) return 0;
const unsigned int it = (unsigned int)(tile - m_tiles);
return encodePolyId(tile->salt, it, 0);
}
struct dtTileState
{
int magic; // Magic number, used to identify the data.
int version; // Data version number.
dtTileRef ref; // Tile ref at the time of storing the data.
};
struct dtPolyState
{
unsigned short flags; // Flags (see dtPolyFlags).
unsigned char area; // Area ID of the polygon.
};
/// @see #storeTileState
int dtNavMesh::getTileStateSize(const dtMeshTile* tile) const
{
if (!tile) return 0;
const int headerSize = dtAlign4(sizeof(dtTileState));
const int polyStateSize = dtAlign4(sizeof(dtPolyState) * tile->header->polyCount);
return headerSize + polyStateSize;
}
/// @par
///
/// Tile state includes non-structural data such as polygon flags, area ids, etc.
/// @note The state data is only valid until the tile reference changes.
/// @see #getTileStateSize, #restoreTileState
dtStatus dtNavMesh::storeTileState(const dtMeshTile* tile, unsigned char* data, const int maxDataSize) const
{
// Make sure there is enough space to store the state.
const int sizeReq = getTileStateSize(tile);
if (maxDataSize < sizeReq)
return DT_FAILURE | DT_BUFFER_TOO_SMALL;
dtTileState* tileState = dtGetThenAdvanceBufferPointer<dtTileState>(data, dtAlign4(sizeof(dtTileState)));
dtPolyState* polyStates = dtGetThenAdvanceBufferPointer<dtPolyState>(data, dtAlign4(sizeof(dtPolyState) * tile->header->polyCount));
// Store tile state.
tileState->magic = DT_NAVMESH_STATE_MAGIC;
tileState->version = DT_NAVMESH_STATE_VERSION;
tileState->ref = getTileRef(tile);
// Store per poly state.
for (int i = 0; i < tile->header->polyCount; ++i)
{
const dtPoly* p = &tile->polys[i];
dtPolyState* s = &polyStates[i];
s->flags = p->flags;
s->area = p->getArea();
}
return DT_SUCCESS;
}
/// @par
///
/// Tile state includes non-structural data such as polygon flags, area ids, etc.
/// @note This function does not impact the tile's #dtTileRef and #dtPolyRef's.
/// @see #storeTileState
dtStatus dtNavMesh::restoreTileState(dtMeshTile* tile, const unsigned char* data, const int maxDataSize)
{
// Make sure there is enough space to store the state.
const int sizeReq = getTileStateSize(tile);
if (maxDataSize < sizeReq)
return DT_FAILURE | DT_INVALID_PARAM;
const dtTileState* tileState = dtGetThenAdvanceBufferPointer<const dtTileState>(data, dtAlign4(sizeof(dtTileState)));
const dtPolyState* polyStates = dtGetThenAdvanceBufferPointer<const dtPolyState>(data, dtAlign4(sizeof(dtPolyState) * tile->header->polyCount));
// Check that the restore is possible.
if (tileState->magic != DT_NAVMESH_STATE_MAGIC)
return DT_FAILURE | DT_WRONG_MAGIC;
if (tileState->version != DT_NAVMESH_STATE_VERSION)
return DT_FAILURE | DT_WRONG_VERSION;
if (tileState->ref != getTileRef(tile))
return DT_FAILURE | DT_INVALID_PARAM;
// Restore per poly state.
for (int i = 0; i < tile->header->polyCount; ++i)
{
dtPoly* p = &tile->polys[i];
const dtPolyState* s = &polyStates[i];
p->flags = s->flags;
p->setArea(s->area);
}
return DT_SUCCESS;
}
/// @par
///
/// Off-mesh connections are stored in the navigation mesh as special 2-vertex
/// polygons with a single edge. At least one of the vertices is expected to be
/// inside a normal polygon. So an off-mesh connection is "entered" from a
/// normal polygon at one of its endpoints. This is the polygon identified by
/// the prevRef parameter.
dtStatus dtNavMesh::getOffMeshConnectionPolyEndPoints(dtPolyRef prevRef, dtPolyRef polyRef, float* startPos, float* endPos) const
{
unsigned int salt, it, ip;
if (!polyRef)
return DT_FAILURE;
// Get current polygon
decodePolyId(polyRef, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM;
const dtMeshTile* tile = &m_tiles[it];
if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM;
const dtPoly* poly = &tile->polys[ip];
// Make sure that the current poly is indeed off-mesh link.
if (poly->getType() != DT_POLYTYPE_OFFMESH_CONNECTION)
return DT_FAILURE;
// Figure out which way to hand out the vertices.
int idx0 = 0, idx1 = 1;
// Find link that points to first vertex.
for (unsigned int i = poly->firstLink; i != DT_NULL_LINK; i = tile->links[i].next)
{
if (tile->links[i].edge == 0)
{
if (tile->links[i].ref != prevRef)
{
idx0 = 1;
idx1 = 0;
}
break;
}
}
dtVcopy(startPos, &tile->verts[poly->verts[idx0]*3]);
dtVcopy(endPos, &tile->verts[poly->verts[idx1]*3]);
return DT_SUCCESS;
}
const dtOffMeshConnection* dtNavMesh::getOffMeshConnectionByRef(dtPolyRef ref) const
{
unsigned int salt, it, ip;
if (!ref)
return 0;
// Get current polygon
decodePolyId(ref, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return 0;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return 0;
const dtMeshTile* tile = &m_tiles[it];
if (ip >= (unsigned int)tile->header->polyCount) return 0;
const dtPoly* poly = &tile->polys[ip];
// Make sure that the current poly is indeed off-mesh link.
if (poly->getType() != DT_POLYTYPE_OFFMESH_CONNECTION)
return 0;
const unsigned int idx = ip - tile->header->offMeshBase;
dtAssert(idx < (unsigned int)tile->header->offMeshConCount);
return &tile->offMeshCons[idx];
}
dtStatus dtNavMesh::setPolyFlags(dtPolyRef ref, unsigned short flags)
{
if (!ref) return DT_FAILURE;
unsigned int salt, it, ip;
decodePolyId(ref, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM;
dtMeshTile* tile = &m_tiles[it];
if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM;
dtPoly* poly = &tile->polys[ip];
// Change flags.
poly->flags = flags;
return DT_SUCCESS;
}
dtStatus dtNavMesh::getPolyFlags(dtPolyRef ref, unsigned short* resultFlags) const
{
if (!ref) return DT_FAILURE;
unsigned int salt, it, ip;
decodePolyId(ref, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM;
const dtMeshTile* tile = &m_tiles[it];
if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM;
const dtPoly* poly = &tile->polys[ip];
*resultFlags = poly->flags;
return DT_SUCCESS;
}
dtStatus dtNavMesh::setPolyArea(dtPolyRef ref, unsigned char area)
{
if (!ref) return DT_FAILURE;
unsigned int salt, it, ip;
decodePolyId(ref, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM;
dtMeshTile* tile = &m_tiles[it];
if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM;
dtPoly* poly = &tile->polys[ip];
poly->setArea(area);
return DT_SUCCESS;
}
dtStatus dtNavMesh::getPolyArea(dtPolyRef ref, unsigned char* resultArea) const
{
if (!ref) return DT_FAILURE;
unsigned int salt, it, ip;
decodePolyId(ref, salt, it, ip);
if (it >= (unsigned int)m_maxTiles) return DT_FAILURE | DT_INVALID_PARAM;
if (m_tiles[it].salt != salt || m_tiles[it].header == 0) return DT_FAILURE | DT_INVALID_PARAM;
const dtMeshTile* tile = &m_tiles[it];
if (ip >= (unsigned int)tile->header->polyCount) return DT_FAILURE | DT_INVALID_PARAM;
const dtPoly* poly = &tile->polys[ip];
*resultArea = poly->getArea();
return DT_SUCCESS;
}