axmol/scripting/javascript/spidermonkey-android/include/gc/Root.h

862 lines
24 KiB
C++

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sw=4 et tw=78:
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef jsgc_root_h__
#define jsgc_root_h__
#ifdef __cplusplus
#include "mozilla/TypeTraits.h"
#include "mozilla/GuardObjects.h"
#include "js/TemplateLib.h"
#include "jspubtd.h"
/*
* Moving GC Stack Rooting
*
* A moving GC may change the physical location of GC allocated things, even
* when they are rooted, updating all pointers to the thing to refer to its new
* location. The GC must therefore know about all live pointers to a thing,
* not just one of them, in order to behave correctly.
*
* The classes below are used to root stack locations whose value may be held
* live across a call that can trigger GC (i.e. a call which might allocate any
* GC things). For a code fragment such as:
*
* Foo();
* ... = obj->lastProperty();
*
* If Foo() can trigger a GC, the stack location of obj must be rooted to
* ensure that the GC does not move the JSObject referred to by obj without
* updating obj's location itself. This rooting must happen regardless of
* whether there are other roots which ensure that the object itself will not
* be collected.
*
* If Foo() cannot trigger a GC, and the same holds for all other calls made
* between obj's definitions and its last uses, then no rooting is required.
*
* Several classes are available for rooting stack locations. All are templated
* on the type T of the value being rooted, for which RootMethods<T> must
* have an instantiation.
*
* - Rooted<T> declares a variable of type T, whose value is always rooted.
* Rooted<T> may be automatically coerced to a Handle<T>, below. Rooted<T>
* should be used whenever a local variable's value may be held live across a
* call which can allocate GC things or otherwise trigger a GC.
*
* - Handle<T> is a const reference to a Rooted<T>. Functions which take GC
* things or values as arguments and need to root those arguments should
* generally use handles for those arguments and avoid any explicit rooting.
* This has two benefits. First, when several such functions call each other
* then redundant rooting of multiple copies of the GC thing can be avoided.
* Second, if the caller does not pass a rooted value a compile error will be
* generated, which is quicker and easier to fix than when relying on a
* separate rooting analysis.
*/
namespace js {
template <typename T> class Rooted;
template <typename T>
struct RootMethods {};
template <typename T>
class HandleBase {};
template <typename T>
class MutableHandleBase {};
} /* namespace js */
namespace JS {
class AutoAssertNoGC;
template <typename T> class MutableHandle;
JS_FRIEND_API(void) EnterAssertNoGCScope();
JS_FRIEND_API(void) LeaveAssertNoGCScope();
JS_FRIEND_API(bool) InNoGCScope();
/*
* Handle provides an implicit constructor for NullPtr so that, given:
* foo(Handle<JSObject*> h);
* callers can simply write:
* foo(NullPtr());
* which avoids creating a Rooted<JSObject*> just to pass NULL.
*/
struct NullPtr
{
static void * const constNullValue;
};
template <typename T>
class MutableHandle;
/*
* Reference to a T that has been rooted elsewhere. This is most useful
* as a parameter type, which guarantees that the T lvalue is properly
* rooted. See "Move GC Stack Rooting" above.
*
* If you want to add additional methods to Handle for a specific
* specialization, define a HandleBase<T> specialization containing them.
*/
template <typename T>
class Handle : public js::HandleBase<T>
{
public:
/* Creates a handle from a handle of a type convertible to T. */
template <typename S>
Handle(Handle<S> handle,
typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy = 0)
{
ptr = reinterpret_cast<const T *>(handle.address());
}
/* Create a handle for a NULL pointer. */
Handle(NullPtr) {
typedef typename js::tl::StaticAssert<js::tl::IsPointerType<T>::result>::result _;
ptr = reinterpret_cast<const T *>(&NullPtr::constNullValue);
}
friend class MutableHandle<T>;
Handle(MutableHandle<T> handle) {
ptr = handle.address();
}
/*
* This may be called only if the location of the T is guaranteed
* to be marked (for some reason other than being a Rooted),
* e.g., if it is guaranteed to be reachable from an implicit root.
*
* Create a Handle from a raw location of a T.
*/
static Handle fromMarkedLocation(const T *p) {
Handle h;
h.ptr = p;
return h;
}
/*
* Construct a handle from an explicitly rooted location. This is the
* normal way to create a handle, and normally happens implicitly.
*/
template <typename S>
inline
Handle(js::Rooted<S> &root,
typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy = 0);
/* Construct a read only handle from a mutable handle. */
template <typename S>
inline
Handle(MutableHandle<S> &root,
typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy = 0);
const T *address() const { return ptr; }
T get() const { return *ptr; }
operator T () const { return get(); }
T operator ->() const { return get(); }
private:
Handle() {}
const T *ptr;
template <typename S>
void operator =(S v) MOZ_DELETE;
};
typedef Handle<JSObject*> HandleObject;
typedef Handle<JSFunction*> HandleFunction;
typedef Handle<JSScript*> HandleScript;
typedef Handle<JSString*> HandleString;
typedef Handle<jsid> HandleId;
typedef Handle<Value> HandleValue;
/*
* Similar to a handle, but the underlying storage can be changed. This is
* useful for outparams.
*
* If you want to add additional methods to MutableHandle for a specific
* specialization, define a MutableHandleBase<T> specialization containing
* them.
*/
template <typename T>
class MutableHandle : public js::MutableHandleBase<T>
{
public:
template <typename S>
MutableHandle(MutableHandle<S> handle,
typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy = 0)
{
this->ptr = reinterpret_cast<const T *>(handle.address());
}
template <typename S>
inline
MutableHandle(js::Rooted<S> *root,
typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy = 0);
void set(T v)
{
JS_ASSERT(!js::RootMethods<T>::poisoned(v));
*ptr = v;
}
/*
* This may be called only if the location of the T is guaranteed
* to be marked (for some reason other than being a Rooted),
* e.g., if it is guaranteed to be reachable from an implicit root.
*
* Create a MutableHandle from a raw location of a T.
*/
static MutableHandle fromMarkedLocation(T *p) {
MutableHandle h;
h.ptr = p;
return h;
}
T *address() const { return ptr; }
T get() const { return *ptr; }
operator T () const { return get(); }
T operator ->() const { return get(); }
private:
MutableHandle() {}
T *ptr;
template <typename S>
void operator =(S v) MOZ_DELETE;
};
typedef MutableHandle<JSObject*> MutableHandleObject;
typedef MutableHandle<JSFunction*> MutableHandleFunction;
typedef MutableHandle<JSScript*> MutableHandleScript;
typedef MutableHandle<JSString*> MutableHandleString;
typedef MutableHandle<jsid> MutableHandleId;
typedef MutableHandle<Value> MutableHandleValue;
/*
* Raw pointer used as documentation that a parameter does not need to be
* rooted.
*/
typedef JSObject * RawObject;
typedef JSFunction * RawFunction;
typedef JSScript * RawScript;
typedef JSString * RawString;
typedef jsid RawId;
typedef Value RawValue;
} /* namespace JS */
namespace js {
/*
* InternalHandle is a handle to an internal pointer into a gcthing. Use
* InternalHandle when you have a pointer to a direct field of a gcthing, or
* when you need a parameter type for something that *may* be a pointer to a
* direct field of a gcthing.
*/
template <typename T>
class InternalHandle { };
template <typename T>
class InternalHandle<T*>
{
void * const *holder;
size_t offset;
public:
/*
* Create an InternalHandle using a Handle to the gcthing containing the
* field in question, and a pointer to the field.
*/
template<typename H>
InternalHandle(const JS::Handle<H> &handle, T *field)
: holder((void**)handle.address()), offset(uintptr_t(field) - uintptr_t(handle.get()))
{
}
/*
* Create an InternalHandle to a field within a Rooted<>.
*/
template<typename R>
InternalHandle(const Rooted<R> &root, T *field)
: holder((void**)root.address()), offset(uintptr_t(field) - uintptr_t(root.get()))
{
}
T *get() const { return reinterpret_cast<T*>(uintptr_t(*holder) + offset); }
const T& operator *() const { return *get(); }
T* operator ->() const { return get(); }
static InternalHandle<T*> fromMarkedLocation(T *fieldPtr) {
return InternalHandle(fieldPtr);
}
private:
/*
* Create an InternalHandle to something that is not a pointer to a
* gcthing, and so does not need to be rooted in the first place. Use these
* InternalHandles to pass pointers into functions that also need to accept
* regular InternalHandles to gcthing fields.
*
* Make this private to prevent accidental misuse; this is only for
* fromMarkedLocation().
*/
InternalHandle(T *field)
: holder(reinterpret_cast<void * const *>(&NullPtr::constNullValue)),
offset(uintptr_t(field))
{
}
};
#ifdef DEBUG
template <typename T>
class IntermediateNoGC
{
T t_;
public:
IntermediateNoGC(const T &t) : t_(t) {
EnterAssertNoGCScope();
}
IntermediateNoGC(const IntermediateNoGC &) {
EnterAssertNoGCScope();
}
~IntermediateNoGC() {
LeaveAssertNoGCScope();
}
const T &operator->() { return t_; }
operator const T &() { return t_; }
};
#endif
/*
* Return<T> wraps GC things that are returned from accessor methods. The
* wrapper helps to ensure correct rooting of the returned pointer and safe
* access while unrooted.
*
* Example usage in a method declaration:
*
* class Foo {
* HeapPtrScript script_;
* ...
* public:
* Return<JSScript*> script() { return script_; }
* };
*
* Example usage of method (1):
*
* Foo foo(...);
* RootedScript script(cx, foo->script());
*
* Example usage of method (2):
*
* Foo foo(...);
* foo->script()->needsArgsObj();
*
* The purpose of this class is to assert eagerly on incorrect use of GC thing
* pointers. For example:
*
* RootedShape shape(cx, ...);
* shape->parent.init(js_NewGCThing<Shape*>(cx, ...));
*
* In this expression, C++ is allowed to order these calls as follows:
*
* Call Effect
* ---- ------
* 1) RootedShape::operator-> Stores shape::ptr_ to stack.
* 2) js_NewGCThing<Shape*> Triggers GC and compaction of shapes. This
* moves shape::ptr_ to a new location.
* 3) HeapPtrObject::init This call takes the relocated shape::ptr_
* as |this|, crashing or, worse, corrupting
* the program's state on the first access
* to a member variable.
*
* If Shape::parent were an accessor function returning a Return<Shape*>, this
* could not happen: Return ensures either immediate rooting or no GC within
* the same expression.
*/
template <typename T>
class Return
{
friend class Rooted<T>;
const T ptr_;
public:
template <typename S>
Return(const S &ptr,
typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy = 0)
: ptr_(ptr)
{}
Return(NullPtr) : ptr_(NULL) {}
/*
* |get(AutoAssertNoGC &)| is the safest way to access a Return<T> without
* rooting it first: it is impossible to call this method without an
* AutoAssertNoGC in scope, so the compiler will automatically catch any
* incorrect usage.
*
* Example:
* AutoAssertNoGC nogc;
* RawScript script = fun->script().get(nogc);
*/
const T &get(AutoAssertNoGC &) const {
return ptr_;
}
/*
* |operator->|'s result cannot be stored in a local variable, so it is safe
* to use in a CanGC context iff no GC can occur anywhere within the same
* expression (generally from one |;| to the next). |operator->| uses a
* temporary object as a guard and will assert if a CanGC context is
* encountered before the next C++ Sequence Point.
*
* INCORRECT:
* fun->script()->bindings = myBindings->clone(cx, ...);
*
* The compiler is allowed to reorder |fun->script()::operator->()| above
* the call to |clone(cx, ...)|. In this case, the RawScript C++ stores on
* the stack may be corrupted by a GC under |clone|. The subsequent
* dereference of this pointer to get |bindings| will result in an invalid
* access. This wrapper ensures that such usage asserts in DEBUG builds when
* it encounters this situation. Without this assertion, it is possible for
* such access to corrupt program state instead of crashing immediately.
*
* CORRECT:
* RootedScript clone(cx, myBindings->clone(cx, ...));
* fun->script()->bindings = clone;
*/
#ifdef DEBUG
IntermediateNoGC<T> operator->() const {
return IntermediateNoGC<T>(ptr_);
}
#else
const T &operator->() const {
return ptr_;
}
#endif
/*
* |unsafeGet()| is unsafe for most uses. Although it performs similar
* checking to |operator->|, its result can be stored to a local variable.
* For this reason, it should only be used when it would be incorrect or
* absurd to create a new Rooted for its use: e.g. for assertions.
*/
#ifdef DEBUG
IntermediateNoGC<T> unsafeGet() const {
return IntermediateNoGC<T>(ptr_);
}
#else
const T &unsafeGet() const {
return ptr_;
}
#endif
/*
* |operator==| is safe to use in any context. It is present to allow:
* JS_ASSERT(myScript == fun->script().unsafeGet());
*
* To be rewritten as:
* JS_ASSERT(fun->script() == myScript);
*
* Note: the new order tells C++ to use |Return<JSScript*>::operator=|
* instead of direct pointer comparison.
*/
bool operator==(const T &other) { return ptr_ == other; }
bool operator!=(const T &other) { return ptr_ != other; }
bool operator==(const Return<T> &other) { return ptr_ == other.ptr_; }
bool operator==(const JS::Handle<T> &other) { return ptr_ == other.get(); }
inline bool operator==(const Rooted<T> &other);
};
/*
* By default, pointers should use the inheritance hierarchy to find their
* ThingRootKind. Some pointer types are explicitly set in jspubtd.h so that
* Rooted<T> may be used without the class definition being available.
*/
template <typename T>
struct RootKind<T *> { static ThingRootKind rootKind() { return T::rootKind(); } };
template <typename T>
struct RootMethods<T *>
{
static T *initial() { return NULL; }
static ThingRootKind kind() { return RootKind<T *>::rootKind(); }
static bool poisoned(T *v) { return IsPoisonedPtr(v); }
};
template <typename T>
class RootedBase {};
/*
* Local variable of type T whose value is always rooted. This is typically
* used for local variables, or for non-rooted values being passed to a
* function that requires a handle, e.g. Foo(Root<T>(cx, x)).
*
* If you want to add additional methods to Rooted for a specific
* specialization, define a RootedBase<T> specialization containing them.
*/
template <typename T>
class Rooted : public RootedBase<T>
{
void init(JSContext *cxArg)
{
#if defined(JSGC_ROOT_ANALYSIS) || defined(JSGC_USE_EXACT_ROOTING)
ContextFriendFields *cx = ContextFriendFields::get(cxArg);
commonInit(cx->thingGCRooters);
#endif
}
void init(JSRuntime *rtArg)
{
#if defined(JSGC_ROOT_ANALYSIS) || defined(JSGC_USE_EXACT_ROOTING)
PerThreadDataFriendFields *pt = PerThreadDataFriendFields::getMainThread(rtArg);
commonInit(pt->thingGCRooters);
#endif
}
void init(js::PerThreadData *ptArg)
{
#if defined(JSGC_ROOT_ANALYSIS) || defined(JSGC_USE_EXACT_ROOTING)
PerThreadDataFriendFields *pt = PerThreadDataFriendFields::get(ptArg);
commonInit(pt->thingGCRooters);
#endif
}
public:
Rooted(JSRuntime *rt
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
: ptr(RootMethods<T>::initial())
{
MOZ_GUARD_OBJECT_NOTIFIER_INIT;
init(rt);
}
Rooted(JSRuntime *rt, T initial
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
: ptr(initial)
{
MOZ_GUARD_OBJECT_NOTIFIER_INIT;
init(rt);
}
Rooted(JSContext *cx
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
: ptr(RootMethods<T>::initial())
{
MOZ_GUARD_OBJECT_NOTIFIER_INIT;
init(cx);
}
Rooted(JSContext *cx, T initial
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
: ptr(initial)
{
MOZ_GUARD_OBJECT_NOTIFIER_INIT;
init(cx);
}
Rooted(js::PerThreadData *pt
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
: ptr(RootMethods<T>::initial())
{
MOZ_GUARD_OBJECT_NOTIFIER_INIT;
init(pt);
}
Rooted(js::PerThreadData *pt, T initial
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
: ptr(initial)
{
MOZ_GUARD_OBJECT_NOTIFIER_INIT;
init(pt);
}
template <typename S>
Rooted(JSContext *cx, const Return<S> &initial
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
: ptr(initial.ptr_)
{
MOZ_GUARD_OBJECT_NOTIFIER_INIT;
init(cx);
}
template <typename S>
Rooted(js::PerThreadData *pt, const Return<S> &initial
MOZ_GUARD_OBJECT_NOTIFIER_PARAM)
: ptr(initial.ptr_)
{
MOZ_GUARD_OBJECT_NOTIFIER_INIT;
init(pt);
}
~Rooted()
{
#if defined(JSGC_ROOT_ANALYSIS) || defined(JSGC_USE_EXACT_ROOTING)
JS_ASSERT(*stack == this);
*stack = prev;
#endif
}
#if defined(JSGC_ROOT_ANALYSIS) || defined(JSGC_USE_EXACT_ROOTING)
Rooted<T> *previous() { return prev; }
#endif
operator T () const { return ptr; }
T operator ->() const { return ptr; }
T * address() { return &ptr; }
const T * address() const { return &ptr; }
T & get() { return ptr; }
const T & get() const { return ptr; }
T & operator =(T value)
{
JS_ASSERT(!RootMethods<T>::poisoned(value));
ptr = value;
return ptr;
}
T & operator =(const Rooted &value)
{
ptr = value;
return ptr;
}
template <typename S>
T & operator =(const Return<S> &value)
{
ptr = value.ptr_;
return ptr;
}
private:
void commonInit(Rooted<void*> **thingGCRooters) {
#if defined(JSGC_ROOT_ANALYSIS) || defined(JSGC_USE_EXACT_ROOTING)
ThingRootKind kind = RootMethods<T>::kind();
this->stack = reinterpret_cast<Rooted<T>**>(&thingGCRooters[kind]);
this->prev = *stack;
*stack = this;
JS_ASSERT(!RootMethods<T>::poisoned(ptr));
#endif
}
#if defined(JSGC_ROOT_ANALYSIS) || defined(JSGC_USE_EXACT_ROOTING)
Rooted<T> **stack, *prev;
#endif
T ptr;
MOZ_DECL_USE_GUARD_OBJECT_NOTIFIER
Rooted(const Rooted &) MOZ_DELETE;
};
#if !(defined(JSGC_ROOT_ANALYSIS) || defined(JSGC_USE_EXACT_ROOTING))
// Defined in vm/String.h.
template <>
class Rooted<JSStableString *>;
#endif
template <typename T>
bool
Return<T>::operator==(const Rooted<T> &other)
{
return ptr_ == other.get();
}
typedef Rooted<JSObject*> RootedObject;
typedef Rooted<JSFunction*> RootedFunction;
typedef Rooted<JSScript*> RootedScript;
typedef Rooted<JSString*> RootedString;
typedef Rooted<jsid> RootedId;
typedef Rooted<Value> RootedValue;
/*
* Mark a stack location as a root for the rooting analysis, without actually
* rooting it in release builds. This should only be used for stack locations
* of GC things that cannot be relocated by a garbage collection, and that
* are definitely reachable via another path.
*/
class SkipRoot
{
#if defined(DEBUG) && defined(JS_GC_ZEAL) && defined(JSGC_ROOT_ANALYSIS) && !defined(JS_THREADSAFE)
SkipRoot **stack, *prev;
const uint8_t *start;
const uint8_t *end;
template <typename T>
void init(ContextFriendFields *cx, const T *ptr, size_t count)
{
this->stack = &cx->skipGCRooters;
this->prev = *stack;
*stack = this;
this->start = (const uint8_t *) ptr;
this->end = this->start + (sizeof(T) * count);
}
public:
template <typename T>
SkipRoot(JSContext *cx, const T *ptr, size_t count = 1
JS_GUARD_OBJECT_NOTIFIER_PARAM)
{
init(ContextFriendFields::get(cx), ptr, count);
JS_GUARD_OBJECT_NOTIFIER_INIT;
}
~SkipRoot()
{
JS_ASSERT(*stack == this);
*stack = prev;
}
SkipRoot *previous() { return prev; }
bool contains(const uint8_t *v, size_t len) {
return v >= start && v + len <= end;
}
#else /* DEBUG && JSGC_ROOT_ANALYSIS */
public:
template <typename T>
SkipRoot(JSContext *cx, const T *ptr, size_t count = 1
JS_GUARD_OBJECT_NOTIFIER_PARAM)
{
JS_GUARD_OBJECT_NOTIFIER_INIT;
}
#endif /* DEBUG && JSGC_ROOT_ANALYSIS */
JS_DECL_USE_GUARD_OBJECT_NOTIFIER
};
} /* namespace js */
namespace JS {
template<typename T> template <typename S>
inline
Handle<T>::Handle(js::Rooted<S> &root,
typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy)
{
ptr = reinterpret_cast<const T *>(root.address());
}
template<typename T> template <typename S>
inline
Handle<T>::Handle(MutableHandle<S> &root,
typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy)
{
ptr = reinterpret_cast<const T *>(root.address());
}
template<typename T> template <typename S>
inline
MutableHandle<T>::MutableHandle(js::Rooted<S> *root,
typename mozilla::EnableIf<mozilla::IsConvertible<S, T>::value, int>::Type dummy)
{
ptr = root->address();
}
/*
* The scoped guard object AutoAssertNoGC forces the GC to assert if a GC is
* attempted while the guard object is live. If you have a GC-unsafe operation
* to perform, use this guard object to protect your operation.
*/
class AutoAssertNoGC
{
MOZ_DECL_USE_GUARD_OBJECT_NOTIFIER
public:
AutoAssertNoGC(MOZ_GUARD_OBJECT_NOTIFIER_ONLY_PARAM) {
MOZ_GUARD_OBJECT_NOTIFIER_INIT;
#ifdef DEBUG
EnterAssertNoGCScope();
#endif
}
~AutoAssertNoGC() {
#ifdef DEBUG
LeaveAssertNoGCScope();
#endif
}
};
/*
* AssertCanGC will assert if it is called inside of an AutoAssertNoGC region.
*/
JS_ALWAYS_INLINE void
AssertCanGC()
{
JS_ASSERT(!InNoGCScope());
}
#if defined(DEBUG) && defined(JS_GC_ZEAL) && defined(JSGC_ROOT_ANALYSIS) && !defined(JS_THREADSAFE)
extern void
CheckStackRoots(JSContext *cx);
#endif
JS_FRIEND_API(bool) NeedRelaxedRootChecks();
} /* namespace JS */
namespace js {
/*
* Hook for dynamic root analysis. Checks the native stack and poisons
* references to GC things which have not been rooted.
*/
inline void MaybeCheckStackRoots(JSContext *cx, bool relax = true)
{
AssertCanGC();
#if defined(DEBUG) && defined(JS_GC_ZEAL) && defined(JSGC_ROOT_ANALYSIS) && !defined(JS_THREADSAFE)
if (relax && NeedRelaxedRootChecks())
return;
CheckStackRoots(cx);
#endif
}
namespace gc {
struct Cell;
} /* namespace gc */
/* Base class for automatic read-only object rooting during compilation. */
class CompilerRootNode
{
protected:
CompilerRootNode(js::gc::Cell *ptr)
: next(NULL), ptr(ptr)
{ }
public:
void **address() { return (void **)&ptr; }
public:
CompilerRootNode *next;
protected:
js::gc::Cell *ptr;
};
} /* namespace js */
#endif /* __cplusplus */
#endif /* jsgc_root_h___ */