axmol/external/pugixml/pugixml.cpp

13006 lines
329 KiB
C++

/**
* pugixml parser - version 1.10
* --------------------------------------------------------
* Copyright (C) 2006-2019, by Arseny Kapoulkine (arseny.kapoulkine@gmail.com)
* Report bugs and download new versions at https://pugixml.org/
*
* This library is distributed under the MIT License. See notice at the end
* of this file.
*
* This work is based on the pugxml parser, which is:
* Copyright (C) 2003, by Kristen Wegner (kristen@tima.net)
*/
#ifndef SOURCE_PUGIXML_CPP
#define SOURCE_PUGIXML_CPP
#include "pugixml.hpp"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <limits.h>
#ifdef PUGIXML_WCHAR_MODE
# include <wchar.h>
#endif
#ifndef PUGIXML_NO_XPATH
# include <math.h>
# include <float.h>
#endif
#ifndef PUGIXML_NO_STL
# include <istream>
# include <ostream>
# include <string>
#endif
// For placement new
#include <new>
#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable: 4127) // conditional expression is constant
# pragma warning(disable: 4324) // structure was padded due to __declspec(align())
# pragma warning(disable: 4702) // unreachable code
# pragma warning(disable: 4996) // this function or variable may be unsafe
#endif
#if defined(_MSC_VER) && defined(__c2__)
# pragma clang diagnostic push
# pragma clang diagnostic ignored "-Wdeprecated" // this function or variable may be unsafe
#endif
#ifdef __INTEL_COMPILER
# pragma warning(disable: 177) // function was declared but never referenced
# pragma warning(disable: 279) // controlling expression is constant
# pragma warning(disable: 1478 1786) // function was declared "deprecated"
# pragma warning(disable: 1684) // conversion from pointer to same-sized integral type
#endif
#if defined(__BORLANDC__) && defined(PUGIXML_HEADER_ONLY)
# pragma warn -8080 // symbol is declared but never used; disabling this inside push/pop bracket does not make the warning go away
#endif
#ifdef __BORLANDC__
# pragma option push
# pragma warn -8008 // condition is always false
# pragma warn -8066 // unreachable code
#endif
#ifdef __SNC__
// Using diag_push/diag_pop does not disable the warnings inside templates due to a compiler bug
# pragma diag_suppress=178 // function was declared but never referenced
# pragma diag_suppress=237 // controlling expression is constant
#endif
#ifdef __TI_COMPILER_VERSION__
# pragma diag_suppress 179 // function was declared but never referenced
#endif
// Inlining controls
#if defined(_MSC_VER) && _MSC_VER >= 1300
# define PUGI__NO_INLINE __declspec(noinline)
#elif defined(__GNUC__)
# define PUGI__NO_INLINE __attribute__((noinline))
#else
# define PUGI__NO_INLINE
#endif
// Branch weight controls
#if defined(__GNUC__) && !defined(__c2__)
# define PUGI__UNLIKELY(cond) __builtin_expect(cond, 0)
#else
# define PUGI__UNLIKELY(cond) (cond)
#endif
// Simple static assertion
#define PUGI__STATIC_ASSERT(cond) { static const char condition_failed[(cond) ? 1 : -1] = {0}; (void)condition_failed[0]; }
// Digital Mars C++ bug workaround for passing char loaded from memory via stack
#ifdef __DMC__
# define PUGI__DMC_VOLATILE volatile
#else
# define PUGI__DMC_VOLATILE
#endif
// Integer sanitizer workaround; we only apply this for clang since gcc8 has no_sanitize but not unsigned-integer-overflow and produces "attribute directive ignored" warnings
#if defined(__clang__) && defined(__has_attribute)
# if __has_attribute(no_sanitize)
# define PUGI__UNSIGNED_OVERFLOW __attribute__((no_sanitize("unsigned-integer-overflow")))
# else
# define PUGI__UNSIGNED_OVERFLOW
# endif
#else
# define PUGI__UNSIGNED_OVERFLOW
#endif
// Borland C++ bug workaround for not defining ::memcpy depending on header include order (can't always use std::memcpy because some compilers don't have it at all)
#if defined(__BORLANDC__) && !defined(__MEM_H_USING_LIST)
using std::memcpy;
using std::memmove;
using std::memset;
#endif
// Some MinGW/GCC versions have headers that erroneously omit LLONG_MIN/LLONG_MAX/ULLONG_MAX definitions from limits.h in some configurations
#if defined(PUGIXML_HAS_LONG_LONG) && defined(__GNUC__) && !defined(LLONG_MAX) && !defined(LLONG_MIN) && !defined(ULLONG_MAX)
# define LLONG_MIN (-LLONG_MAX - 1LL)
# define LLONG_MAX __LONG_LONG_MAX__
# define ULLONG_MAX (LLONG_MAX * 2ULL + 1ULL)
#endif
// In some environments MSVC is a compiler but the CRT lacks certain MSVC-specific features
#if defined(_MSC_VER) && !defined(__S3E__)
# define PUGI__MSVC_CRT_VERSION _MSC_VER
#endif
// Not all platforms have snprintf; we define a wrapper that uses snprintf if possible. This only works with buffers with a known size.
#if __cplusplus >= 201103
# define PUGI__SNPRINTF(buf, ...) snprintf(buf, sizeof(buf), __VA_ARGS__)
#elif defined(PUGI__MSVC_CRT_VERSION) && PUGI__MSVC_CRT_VERSION >= 1400
# define PUGI__SNPRINTF(buf, ...) _snprintf_s(buf, _countof(buf), _TRUNCATE, __VA_ARGS__)
#else
# define PUGI__SNPRINTF sprintf
#endif
// We put implementation details into an anonymous namespace in source mode, but have to keep it in non-anonymous namespace in header-only mode to prevent binary bloat.
#ifdef PUGIXML_HEADER_ONLY
# define PUGI__NS_BEGIN namespace pugi { namespace impl {
# define PUGI__NS_END } }
# define PUGI__FN inline
# define PUGI__FN_NO_INLINE inline
#else
# if defined(_MSC_VER) && _MSC_VER < 1300 // MSVC6 seems to have an amusing bug with anonymous namespaces inside namespaces
# define PUGI__NS_BEGIN namespace pugi { namespace impl {
# define PUGI__NS_END } }
# else
# define PUGI__NS_BEGIN namespace pugi { namespace impl { namespace {
# define PUGI__NS_END } } }
# endif
# define PUGI__FN
# define PUGI__FN_NO_INLINE PUGI__NO_INLINE
#endif
// uintptr_t
#if (defined(_MSC_VER) && _MSC_VER < 1600) || (defined(__BORLANDC__) && __BORLANDC__ < 0x561)
namespace pugi
{
# ifndef _UINTPTR_T_DEFINED
typedef size_t uintptr_t;
# endif
typedef unsigned __int8 uint8_t;
typedef unsigned __int16 uint16_t;
typedef unsigned __int32 uint32_t;
}
#else
# include <stdint.h>
#endif
// Memory allocation
PUGI__NS_BEGIN
PUGI__FN void* default_allocate(size_t size)
{
return malloc(size);
}
PUGI__FN void default_deallocate(void* ptr)
{
free(ptr);
}
template <typename T>
struct xml_memory_management_function_storage
{
static allocation_function allocate;
static deallocation_function deallocate;
};
// Global allocation functions are stored in class statics so that in header mode linker deduplicates them
// Without a template<> we'll get multiple definitions of the same static
template <typename T> allocation_function xml_memory_management_function_storage<T>::allocate = default_allocate;
template <typename T> deallocation_function xml_memory_management_function_storage<T>::deallocate = default_deallocate;
typedef xml_memory_management_function_storage<int> xml_memory;
PUGI__NS_END
// String utilities
PUGI__NS_BEGIN
// Get string length
PUGI__FN size_t strlength(const char_t* s)
{
assert(s);
#ifdef PUGIXML_WCHAR_MODE
return wcslen(s);
#else
return strlen(s);
#endif
}
// Compare two strings
PUGI__FN bool strequal(const char_t* src, const char_t* dst)
{
assert(src && dst);
#ifdef PUGIXML_WCHAR_MODE
return wcscmp(src, dst) == 0;
#else
return strcmp(src, dst) == 0;
#endif
}
// Compare lhs with [rhs_begin, rhs_end)
PUGI__FN bool strequalrange(const char_t* lhs, const char_t* rhs, size_t count)
{
for (size_t i = 0; i < count; ++i)
if (lhs[i] != rhs[i])
return false;
return lhs[count] == 0;
}
// Get length of wide string, even if CRT lacks wide character support
PUGI__FN size_t strlength_wide(const wchar_t* s)
{
assert(s);
#ifdef PUGIXML_WCHAR_MODE
return wcslen(s);
#else
const wchar_t* end = s;
while (*end) end++;
return static_cast<size_t>(end - s);
#endif
}
PUGI__NS_END
// auto_ptr-like object for exception recovery
PUGI__NS_BEGIN
template <typename T> struct auto_deleter
{
typedef void (*D)(T*);
T* data;
D deleter;
auto_deleter(T* data_, D deleter_): data(data_), deleter(deleter_)
{
}
~auto_deleter()
{
if (data) deleter(data);
}
T* release()
{
T* result = data;
data = 0;
return result;
}
};
PUGI__NS_END
#ifdef PUGIXML_COMPACT
PUGI__NS_BEGIN
class compact_hash_table
{
public:
compact_hash_table(): _items(0), _capacity(0), _count(0)
{
}
void clear()
{
if (_items)
{
xml_memory::deallocate(_items);
_items = 0;
_capacity = 0;
_count = 0;
}
}
void* find(const void* key)
{
if (_capacity == 0) return 0;
item_t* item = get_item(key);
assert(item);
assert(item->key == key || (item->key == 0 && item->value == 0));
return item->value;
}
void insert(const void* key, void* value)
{
assert(_capacity != 0 && _count < _capacity - _capacity / 4);
item_t* item = get_item(key);
assert(item);
if (item->key == 0)
{
_count++;
item->key = key;
}
item->value = value;
}
bool reserve(size_t extra = 16)
{
if (_count + extra >= _capacity - _capacity / 4)
return rehash(_count + extra);
return true;
}
private:
struct item_t
{
const void* key;
void* value;
};
item_t* _items;
size_t _capacity;
size_t _count;
bool rehash(size_t count);
item_t* get_item(const void* key)
{
assert(key);
assert(_capacity > 0);
size_t hashmod = _capacity - 1;
size_t bucket = hash(key) & hashmod;
for (size_t probe = 0; probe <= hashmod; ++probe)
{
item_t& probe_item = _items[bucket];
if (probe_item.key == key || probe_item.key == 0)
return &probe_item;
// hash collision, quadratic probing
bucket = (bucket + probe + 1) & hashmod;
}
assert(false && "Hash table is full"); // unreachable
return 0;
}
static PUGI__UNSIGNED_OVERFLOW unsigned int hash(const void* key)
{
unsigned int h = static_cast<unsigned int>(reinterpret_cast<uintptr_t>(key) & 0xffffffff);
// MurmurHash3 32-bit finalizer
h ^= h >> 16;
h *= 0x85ebca6bu;
h ^= h >> 13;
h *= 0xc2b2ae35u;
h ^= h >> 16;
return h;
}
};
PUGI__FN_NO_INLINE bool compact_hash_table::rehash(size_t count)
{
size_t capacity = 32;
while (count >= capacity - capacity / 4)
capacity *= 2;
compact_hash_table rt;
rt._capacity = capacity;
rt._items = static_cast<item_t*>(xml_memory::allocate(sizeof(item_t) * capacity));
if (!rt._items)
return false;
memset(rt._items, 0, sizeof(item_t) * capacity);
for (size_t i = 0; i < _capacity; ++i)
if (_items[i].key)
rt.insert(_items[i].key, _items[i].value);
if (_items)
xml_memory::deallocate(_items);
_capacity = capacity;
_items = rt._items;
assert(_count == rt._count);
return true;
}
PUGI__NS_END
#endif
PUGI__NS_BEGIN
#ifdef PUGIXML_COMPACT
static const uintptr_t xml_memory_block_alignment = 4;
#else
static const uintptr_t xml_memory_block_alignment = sizeof(void*);
#endif
// extra metadata bits
static const uintptr_t xml_memory_page_contents_shared_mask = 64;
static const uintptr_t xml_memory_page_name_allocated_mask = 32;
static const uintptr_t xml_memory_page_value_allocated_mask = 16;
static const uintptr_t xml_memory_page_type_mask = 15;
// combined masks for string uniqueness
static const uintptr_t xml_memory_page_name_allocated_or_shared_mask = xml_memory_page_name_allocated_mask | xml_memory_page_contents_shared_mask;
static const uintptr_t xml_memory_page_value_allocated_or_shared_mask = xml_memory_page_value_allocated_mask | xml_memory_page_contents_shared_mask;
#ifdef PUGIXML_COMPACT
#define PUGI__GETHEADER_IMPL(object, page, flags) // unused
#define PUGI__GETPAGE_IMPL(header) (header).get_page()
#else
#define PUGI__GETHEADER_IMPL(object, page, flags) (((reinterpret_cast<char*>(object) - reinterpret_cast<char*>(page)) << 8) | (flags))
// this macro casts pointers through void* to avoid 'cast increases required alignment of target type' warnings
#define PUGI__GETPAGE_IMPL(header) static_cast<impl::xml_memory_page*>(const_cast<void*>(static_cast<const void*>(reinterpret_cast<const char*>(&header) - (header >> 8))))
#endif
#define PUGI__GETPAGE(n) PUGI__GETPAGE_IMPL((n)->header)
#define PUGI__NODETYPE(n) static_cast<xml_node_type>((n)->header & impl::xml_memory_page_type_mask)
struct xml_allocator;
struct xml_memory_page
{
static xml_memory_page* construct(void* memory)
{
xml_memory_page* result = static_cast<xml_memory_page*>(memory);
result->allocator = 0;
result->prev = 0;
result->next = 0;
result->busy_size = 0;
result->freed_size = 0;
#ifdef PUGIXML_COMPACT
result->compact_string_base = 0;
result->compact_shared_parent = 0;
result->compact_page_marker = 0;
#endif
return result;
}
xml_allocator* allocator;
xml_memory_page* prev;
xml_memory_page* next;
size_t busy_size;
size_t freed_size;
#ifdef PUGIXML_COMPACT
char_t* compact_string_base;
void* compact_shared_parent;
uint32_t* compact_page_marker;
#endif
};
static const size_t xml_memory_page_size =
#ifdef PUGIXML_MEMORY_PAGE_SIZE
(PUGIXML_MEMORY_PAGE_SIZE)
#else
32768
#endif
- sizeof(xml_memory_page);
struct xml_memory_string_header
{
uint16_t page_offset; // offset from page->data
uint16_t full_size; // 0 if string occupies whole page
};
struct xml_allocator
{
xml_allocator(xml_memory_page* root): _root(root), _busy_size(root->busy_size)
{
#ifdef PUGIXML_COMPACT
_hash = 0;
#endif
}
xml_memory_page* allocate_page(size_t data_size)
{
size_t size = sizeof(xml_memory_page) + data_size;
// allocate block with some alignment, leaving memory for worst-case padding
void* memory = xml_memory::allocate(size);
if (!memory) return 0;
// prepare page structure
xml_memory_page* page = xml_memory_page::construct(memory);
assert(page);
page->allocator = _root->allocator;
return page;
}
static void deallocate_page(xml_memory_page* page)
{
xml_memory::deallocate(page);
}
void* allocate_memory_oob(size_t size, xml_memory_page*& out_page);
void* allocate_memory(size_t size, xml_memory_page*& out_page)
{
if (PUGI__UNLIKELY(_busy_size + size > xml_memory_page_size))
return allocate_memory_oob(size, out_page);
void* buf = reinterpret_cast<char*>(_root) + sizeof(xml_memory_page) + _busy_size;
_busy_size += size;
out_page = _root;
return buf;
}
#ifdef PUGIXML_COMPACT
void* allocate_object(size_t size, xml_memory_page*& out_page)
{
void* result = allocate_memory(size + sizeof(uint32_t), out_page);
if (!result) return 0;
// adjust for marker
ptrdiff_t offset = static_cast<char*>(result) - reinterpret_cast<char*>(out_page->compact_page_marker);
if (PUGI__UNLIKELY(static_cast<uintptr_t>(offset) >= 256 * xml_memory_block_alignment))
{
// insert new marker
uint32_t* marker = static_cast<uint32_t*>(result);
*marker = static_cast<uint32_t>(reinterpret_cast<char*>(marker) - reinterpret_cast<char*>(out_page));
out_page->compact_page_marker = marker;
// since we don't reuse the page space until we reallocate it, we can just pretend that we freed the marker block
// this will make sure deallocate_memory correctly tracks the size
out_page->freed_size += sizeof(uint32_t);
return marker + 1;
}
else
{
// roll back uint32_t part
_busy_size -= sizeof(uint32_t);
return result;
}
}
#else
void* allocate_object(size_t size, xml_memory_page*& out_page)
{
return allocate_memory(size, out_page);
}
#endif
void deallocate_memory(void* ptr, size_t size, xml_memory_page* page)
{
if (page == _root) page->busy_size = _busy_size;
assert(ptr >= reinterpret_cast<char*>(page) + sizeof(xml_memory_page) && ptr < reinterpret_cast<char*>(page) + sizeof(xml_memory_page) + page->busy_size);
(void)!ptr;
page->freed_size += size;
assert(page->freed_size <= page->busy_size);
if (page->freed_size == page->busy_size)
{
if (page->next == 0)
{
assert(_root == page);
// top page freed, just reset sizes
page->busy_size = 0;
page->freed_size = 0;
#ifdef PUGIXML_COMPACT
// reset compact state to maximize efficiency
page->compact_string_base = 0;
page->compact_shared_parent = 0;
page->compact_page_marker = 0;
#endif
_busy_size = 0;
}
else
{
assert(_root != page);
assert(page->prev);
// remove from the list
page->prev->next = page->next;
page->next->prev = page->prev;
// deallocate
deallocate_page(page);
}
}
}
char_t* allocate_string(size_t length)
{
static const size_t max_encoded_offset = (1 << 16) * xml_memory_block_alignment;
PUGI__STATIC_ASSERT(xml_memory_page_size <= max_encoded_offset);
// allocate memory for string and header block
size_t size = sizeof(xml_memory_string_header) + length * sizeof(char_t);
// round size up to block alignment boundary
size_t full_size = (size + (xml_memory_block_alignment - 1)) & ~(xml_memory_block_alignment - 1);
xml_memory_page* page;
xml_memory_string_header* header = static_cast<xml_memory_string_header*>(allocate_memory(full_size, page));
if (!header) return 0;
// setup header
ptrdiff_t page_offset = reinterpret_cast<char*>(header) - reinterpret_cast<char*>(page) - sizeof(xml_memory_page);
assert(page_offset % xml_memory_block_alignment == 0);
assert(page_offset >= 0 && static_cast<size_t>(page_offset) < max_encoded_offset);
header->page_offset = static_cast<uint16_t>(static_cast<size_t>(page_offset) / xml_memory_block_alignment);
// full_size == 0 for large strings that occupy the whole page
assert(full_size % xml_memory_block_alignment == 0);
assert(full_size < max_encoded_offset || (page->busy_size == full_size && page_offset == 0));
header->full_size = static_cast<uint16_t>(full_size < max_encoded_offset ? full_size / xml_memory_block_alignment : 0);
// round-trip through void* to avoid 'cast increases required alignment of target type' warning
// header is guaranteed a pointer-sized alignment, which should be enough for char_t
return static_cast<char_t*>(static_cast<void*>(header + 1));
}
void deallocate_string(char_t* string)
{
// this function casts pointers through void* to avoid 'cast increases required alignment of target type' warnings
// we're guaranteed the proper (pointer-sized) alignment on the input string if it was allocated via allocate_string
// get header
xml_memory_string_header* header = static_cast<xml_memory_string_header*>(static_cast<void*>(string)) - 1;
assert(header);
// deallocate
size_t page_offset = sizeof(xml_memory_page) + header->page_offset * xml_memory_block_alignment;
xml_memory_page* page = reinterpret_cast<xml_memory_page*>(static_cast<void*>(reinterpret_cast<char*>(header) - page_offset));
// if full_size == 0 then this string occupies the whole page
size_t full_size = header->full_size == 0 ? page->busy_size : header->full_size * xml_memory_block_alignment;
deallocate_memory(header, full_size, page);
}
bool reserve()
{
#ifdef PUGIXML_COMPACT
return _hash->reserve();
#else
return true;
#endif
}
xml_memory_page* _root;
size_t _busy_size;
#ifdef PUGIXML_COMPACT
compact_hash_table* _hash;
#endif
};
PUGI__FN_NO_INLINE void* xml_allocator::allocate_memory_oob(size_t size, xml_memory_page*& out_page)
{
const size_t large_allocation_threshold = xml_memory_page_size / 4;
xml_memory_page* page = allocate_page(size <= large_allocation_threshold ? xml_memory_page_size : size);
out_page = page;
if (!page) return 0;
if (size <= large_allocation_threshold)
{
_root->busy_size = _busy_size;
// insert page at the end of linked list
page->prev = _root;
_root->next = page;
_root = page;
_busy_size = size;
}
else
{
// insert page before the end of linked list, so that it is deleted as soon as possible
// the last page is not deleted even if it's empty (see deallocate_memory)
assert(_root->prev);
page->prev = _root->prev;
page->next = _root;
_root->prev->next = page;
_root->prev = page;
page->busy_size = size;
}
return reinterpret_cast<char*>(page) + sizeof(xml_memory_page);
}
PUGI__NS_END
#ifdef PUGIXML_COMPACT
PUGI__NS_BEGIN
static const uintptr_t compact_alignment_log2 = 2;
static const uintptr_t compact_alignment = 1 << compact_alignment_log2;
class compact_header
{
public:
compact_header(xml_memory_page* page, unsigned int flags)
{
PUGI__STATIC_ASSERT(xml_memory_block_alignment == compact_alignment);
ptrdiff_t offset = (reinterpret_cast<char*>(this) - reinterpret_cast<char*>(page->compact_page_marker));
assert(offset % compact_alignment == 0 && static_cast<uintptr_t>(offset) < 256 * compact_alignment);
_page = static_cast<unsigned char>(offset >> compact_alignment_log2);
_flags = static_cast<unsigned char>(flags);
}
void operator&=(uintptr_t mod)
{
_flags &= static_cast<unsigned char>(mod);
}
void operator|=(uintptr_t mod)
{
_flags |= static_cast<unsigned char>(mod);
}
uintptr_t operator&(uintptr_t mod) const
{
return _flags & mod;
}
xml_memory_page* get_page() const
{
// round-trip through void* to silence 'cast increases required alignment of target type' warnings
const char* page_marker = reinterpret_cast<const char*>(this) - (_page << compact_alignment_log2);
const char* page = page_marker - *reinterpret_cast<const uint32_t*>(static_cast<const void*>(page_marker));
return const_cast<xml_memory_page*>(reinterpret_cast<const xml_memory_page*>(static_cast<const void*>(page)));
}
private:
unsigned char _page;
unsigned char _flags;
};
PUGI__FN xml_memory_page* compact_get_page(const void* object, int header_offset)
{
const compact_header* header = reinterpret_cast<const compact_header*>(static_cast<const char*>(object) - header_offset);
return header->get_page();
}
template <int header_offset, typename T> PUGI__FN_NO_INLINE T* compact_get_value(const void* object)
{
return static_cast<T*>(compact_get_page(object, header_offset)->allocator->_hash->find(object));
}
template <int header_offset, typename T> PUGI__FN_NO_INLINE void compact_set_value(const void* object, T* value)
{
compact_get_page(object, header_offset)->allocator->_hash->insert(object, value);
}
template <typename T, int header_offset, int start = -126> class compact_pointer
{
public:
compact_pointer(): _data(0)
{
}
void operator=(const compact_pointer& rhs)
{
*this = rhs + 0;
}
void operator=(T* value)
{
if (value)
{
// value is guaranteed to be compact-aligned; 'this' is not
// our decoding is based on 'this' aligned to compact alignment downwards (see operator T*)
// so for negative offsets (e.g. -3) we need to adjust the diff by compact_alignment - 1 to
// compensate for arithmetic shift rounding for negative values
ptrdiff_t diff = reinterpret_cast<char*>(value) - reinterpret_cast<char*>(this);
ptrdiff_t offset = ((diff + int(compact_alignment - 1)) >> compact_alignment_log2) - start;
if (static_cast<uintptr_t>(offset) <= 253)
_data = static_cast<unsigned char>(offset + 1);
else
{
compact_set_value<header_offset>(this, value);
_data = 255;
}
}
else
_data = 0;
}
operator T*() const
{
if (_data)
{
if (_data < 255)
{
uintptr_t base = reinterpret_cast<uintptr_t>(this) & ~(compact_alignment - 1);
return reinterpret_cast<T*>(base + (_data - 1 + start) * compact_alignment);
}
else
return compact_get_value<header_offset, T>(this);
}
else
return 0;
}
T* operator->() const
{
return *this;
}
private:
unsigned char _data;
};
template <typename T, int header_offset> class compact_pointer_parent
{
public:
compact_pointer_parent(): _data(0)
{
}
void operator=(const compact_pointer_parent& rhs)
{
*this = rhs + 0;
}
void operator=(T* value)
{
if (value)
{
// value is guaranteed to be compact-aligned; 'this' is not
// our decoding is based on 'this' aligned to compact alignment downwards (see operator T*)
// so for negative offsets (e.g. -3) we need to adjust the diff by compact_alignment - 1 to
// compensate for arithmetic shift behavior for negative values
ptrdiff_t diff = reinterpret_cast<char*>(value) - reinterpret_cast<char*>(this);
ptrdiff_t offset = ((diff + int(compact_alignment - 1)) >> compact_alignment_log2) + 65533;
if (static_cast<uintptr_t>(offset) <= 65533)
{
_data = static_cast<unsigned short>(offset + 1);
}
else
{
xml_memory_page* page = compact_get_page(this, header_offset);
if (PUGI__UNLIKELY(page->compact_shared_parent == 0))
page->compact_shared_parent = value;
if (page->compact_shared_parent == value)
{
_data = 65534;
}
else
{
compact_set_value<header_offset>(this, value);
_data = 65535;
}
}
}
else
{
_data = 0;
}
}
operator T*() const
{
if (_data)
{
if (_data < 65534)
{
uintptr_t base = reinterpret_cast<uintptr_t>(this) & ~(compact_alignment - 1);
return reinterpret_cast<T*>(base + (_data - 1 - 65533) * compact_alignment);
}
else if (_data == 65534)
return static_cast<T*>(compact_get_page(this, header_offset)->compact_shared_parent);
else
return compact_get_value<header_offset, T>(this);
}
else
return 0;
}
T* operator->() const
{
return *this;
}
private:
uint16_t _data;
};
template <int header_offset, int base_offset> class compact_string
{
public:
compact_string(): _data(0)
{
}
void operator=(const compact_string& rhs)
{
*this = rhs + 0;
}
void operator=(char_t* value)
{
if (value)
{
xml_memory_page* page = compact_get_page(this, header_offset);
if (PUGI__UNLIKELY(page->compact_string_base == 0))
page->compact_string_base = value;
ptrdiff_t offset = value - page->compact_string_base;
if (static_cast<uintptr_t>(offset) < (65535 << 7))
{
// round-trip through void* to silence 'cast increases required alignment of target type' warnings
uint16_t* base = reinterpret_cast<uint16_t*>(static_cast<void*>(reinterpret_cast<char*>(this) - base_offset));
if (*base == 0)
{
*base = static_cast<uint16_t>((offset >> 7) + 1);
_data = static_cast<unsigned char>((offset & 127) + 1);
}
else
{
ptrdiff_t remainder = offset - ((*base - 1) << 7);
if (static_cast<uintptr_t>(remainder) <= 253)
{
_data = static_cast<unsigned char>(remainder + 1);
}
else
{
compact_set_value<header_offset>(this, value);
_data = 255;
}
}
}
else
{
compact_set_value<header_offset>(this, value);
_data = 255;
}
}
else
{
_data = 0;
}
}
operator char_t*() const
{
if (_data)
{
if (_data < 255)
{
xml_memory_page* page = compact_get_page(this, header_offset);
// round-trip through void* to silence 'cast increases required alignment of target type' warnings
const uint16_t* base = reinterpret_cast<const uint16_t*>(static_cast<const void*>(reinterpret_cast<const char*>(this) - base_offset));
assert(*base);
ptrdiff_t offset = ((*base - 1) << 7) + (_data - 1);
return page->compact_string_base + offset;
}
else
{
return compact_get_value<header_offset, char_t>(this);
}
}
else
return 0;
}
private:
unsigned char _data;
};
PUGI__NS_END
#endif
#ifdef PUGIXML_COMPACT
namespace pugi
{
struct xml_attribute_struct
{
xml_attribute_struct(impl::xml_memory_page* page): header(page, 0), namevalue_base(0)
{
PUGI__STATIC_ASSERT(sizeof(xml_attribute_struct) == 8);
}
impl::compact_header header;
uint16_t namevalue_base;
impl::compact_string<4, 2> name;
impl::compact_string<5, 3> value;
impl::compact_pointer<xml_attribute_struct, 6> prev_attribute_c;
impl::compact_pointer<xml_attribute_struct, 7, 0> next_attribute;
};
struct xml_node_struct
{
xml_node_struct(impl::xml_memory_page* page, xml_node_type type): header(page, type), namevalue_base(0)
{
PUGI__STATIC_ASSERT(sizeof(xml_node_struct) == 12);
}
impl::compact_header header;
uint16_t namevalue_base;
impl::compact_string<4, 2> name;
impl::compact_string<5, 3> value;
impl::compact_pointer_parent<xml_node_struct, 6> parent;
impl::compact_pointer<xml_node_struct, 8, 0> first_child;
impl::compact_pointer<xml_node_struct, 9> prev_sibling_c;
impl::compact_pointer<xml_node_struct, 10, 0> next_sibling;
impl::compact_pointer<xml_attribute_struct, 11, 0> first_attribute;
};
}
#else
namespace pugi
{
struct xml_attribute_struct
{
xml_attribute_struct(impl::xml_memory_page* page): name(0), value(0), prev_attribute_c(0), next_attribute(0)
{
header = PUGI__GETHEADER_IMPL(this, page, 0);
}
uintptr_t header;
char_t* name;
char_t* value;
xml_attribute_struct* prev_attribute_c;
xml_attribute_struct* next_attribute;
};
struct xml_node_struct
{
xml_node_struct(impl::xml_memory_page* page, xml_node_type type): name(0), value(0), parent(0), first_child(0), prev_sibling_c(0), next_sibling(0), first_attribute(0)
{
header = PUGI__GETHEADER_IMPL(this, page, type);
}
uintptr_t header;
char_t* name;
char_t* value;
xml_node_struct* parent;
xml_node_struct* first_child;
xml_node_struct* prev_sibling_c;
xml_node_struct* next_sibling;
xml_attribute_struct* first_attribute;
};
}
#endif
PUGI__NS_BEGIN
struct xml_extra_buffer
{
char_t* buffer;
xml_extra_buffer* next;
};
struct xml_document_struct: public xml_node_struct, public xml_allocator
{
xml_document_struct(xml_memory_page* page): xml_node_struct(page, node_document), xml_allocator(page), buffer(0), extra_buffers(0)
{
}
const char_t* buffer;
xml_extra_buffer* extra_buffers;
#ifdef PUGIXML_COMPACT
compact_hash_table hash;
#endif
};
template <typename Object> inline xml_allocator& get_allocator(const Object* object)
{
assert(object);
return *PUGI__GETPAGE(object)->allocator;
}
template <typename Object> inline xml_document_struct& get_document(const Object* object)
{
assert(object);
return *static_cast<xml_document_struct*>(PUGI__GETPAGE(object)->allocator);
}
PUGI__NS_END
// Low-level DOM operations
PUGI__NS_BEGIN
inline xml_attribute_struct* allocate_attribute(xml_allocator& alloc)
{
xml_memory_page* page;
void* memory = alloc.allocate_object(sizeof(xml_attribute_struct), page);
if (!memory) return 0;
return new (memory) xml_attribute_struct(page);
}
inline xml_node_struct* allocate_node(xml_allocator& alloc, xml_node_type type)
{
xml_memory_page* page;
void* memory = alloc.allocate_object(sizeof(xml_node_struct), page);
if (!memory) return 0;
return new (memory) xml_node_struct(page, type);
}
inline void destroy_attribute(xml_attribute_struct* a, xml_allocator& alloc)
{
if (a->header & impl::xml_memory_page_name_allocated_mask)
alloc.deallocate_string(a->name);
if (a->header & impl::xml_memory_page_value_allocated_mask)
alloc.deallocate_string(a->value);
alloc.deallocate_memory(a, sizeof(xml_attribute_struct), PUGI__GETPAGE(a));
}
inline void destroy_node(xml_node_struct* n, xml_allocator& alloc)
{
if (n->header & impl::xml_memory_page_name_allocated_mask)
alloc.deallocate_string(n->name);
if (n->header & impl::xml_memory_page_value_allocated_mask)
alloc.deallocate_string(n->value);
for (xml_attribute_struct* attr = n->first_attribute; attr; )
{
xml_attribute_struct* next = attr->next_attribute;
destroy_attribute(attr, alloc);
attr = next;
}
for (xml_node_struct* child = n->first_child; child; )
{
xml_node_struct* next = child->next_sibling;
destroy_node(child, alloc);
child = next;
}
alloc.deallocate_memory(n, sizeof(xml_node_struct), PUGI__GETPAGE(n));
}
inline void append_node(xml_node_struct* child, xml_node_struct* node)
{
child->parent = node;
xml_node_struct* head = node->first_child;
if (head)
{
xml_node_struct* tail = head->prev_sibling_c;
tail->next_sibling = child;
child->prev_sibling_c = tail;
head->prev_sibling_c = child;
}
else
{
node->first_child = child;
child->prev_sibling_c = child;
}
}
inline void prepend_node(xml_node_struct* child, xml_node_struct* node)
{
child->parent = node;
xml_node_struct* head = node->first_child;
if (head)
{
child->prev_sibling_c = head->prev_sibling_c;
head->prev_sibling_c = child;
}
else
child->prev_sibling_c = child;
child->next_sibling = head;
node->first_child = child;
}
inline void insert_node_after(xml_node_struct* child, xml_node_struct* node)
{
xml_node_struct* parent = node->parent;
child->parent = parent;
if (node->next_sibling)
node->next_sibling->prev_sibling_c = child;
else
parent->first_child->prev_sibling_c = child;
child->next_sibling = node->next_sibling;
child->prev_sibling_c = node;
node->next_sibling = child;
}
inline void insert_node_before(xml_node_struct* child, xml_node_struct* node)
{
xml_node_struct* parent = node->parent;
child->parent = parent;
if (node->prev_sibling_c->next_sibling)
node->prev_sibling_c->next_sibling = child;
else
parent->first_child = child;
child->prev_sibling_c = node->prev_sibling_c;
child->next_sibling = node;
node->prev_sibling_c = child;
}
inline void remove_node(xml_node_struct* node)
{
xml_node_struct* parent = node->parent;
if (node->next_sibling)
node->next_sibling->prev_sibling_c = node->prev_sibling_c;
else
parent->first_child->prev_sibling_c = node->prev_sibling_c;
if (node->prev_sibling_c->next_sibling)
node->prev_sibling_c->next_sibling = node->next_sibling;
else
parent->first_child = node->next_sibling;
node->parent = 0;
node->prev_sibling_c = 0;
node->next_sibling = 0;
}
inline void append_attribute(xml_attribute_struct* attr, xml_node_struct* node)
{
xml_attribute_struct* head = node->first_attribute;
if (head)
{
xml_attribute_struct* tail = head->prev_attribute_c;
tail->next_attribute = attr;
attr->prev_attribute_c = tail;
head->prev_attribute_c = attr;
}
else
{
node->first_attribute = attr;
attr->prev_attribute_c = attr;
}
}
inline void prepend_attribute(xml_attribute_struct* attr, xml_node_struct* node)
{
xml_attribute_struct* head = node->first_attribute;
if (head)
{
attr->prev_attribute_c = head->prev_attribute_c;
head->prev_attribute_c = attr;
}
else
attr->prev_attribute_c = attr;
attr->next_attribute = head;
node->first_attribute = attr;
}
inline void insert_attribute_after(xml_attribute_struct* attr, xml_attribute_struct* place, xml_node_struct* node)
{
if (place->next_attribute)
place->next_attribute->prev_attribute_c = attr;
else
node->first_attribute->prev_attribute_c = attr;
attr->next_attribute = place->next_attribute;
attr->prev_attribute_c = place;
place->next_attribute = attr;
}
inline void insert_attribute_before(xml_attribute_struct* attr, xml_attribute_struct* place, xml_node_struct* node)
{
if (place->prev_attribute_c->next_attribute)
place->prev_attribute_c->next_attribute = attr;
else
node->first_attribute = attr;
attr->prev_attribute_c = place->prev_attribute_c;
attr->next_attribute = place;
place->prev_attribute_c = attr;
}
inline void remove_attribute(xml_attribute_struct* attr, xml_node_struct* node)
{
if (attr->next_attribute)
attr->next_attribute->prev_attribute_c = attr->prev_attribute_c;
else
node->first_attribute->prev_attribute_c = attr->prev_attribute_c;
if (attr->prev_attribute_c->next_attribute)
attr->prev_attribute_c->next_attribute = attr->next_attribute;
else
node->first_attribute = attr->next_attribute;
attr->prev_attribute_c = 0;
attr->next_attribute = 0;
}
PUGI__FN_NO_INLINE xml_node_struct* append_new_node(xml_node_struct* node, xml_allocator& alloc, xml_node_type type = node_element)
{
if (!alloc.reserve()) return 0;
xml_node_struct* child = allocate_node(alloc, type);
if (!child) return 0;
append_node(child, node);
return child;
}
PUGI__FN_NO_INLINE xml_attribute_struct* append_new_attribute(xml_node_struct* node, xml_allocator& alloc)
{
if (!alloc.reserve()) return 0;
xml_attribute_struct* attr = allocate_attribute(alloc);
if (!attr) return 0;
append_attribute(attr, node);
return attr;
}
PUGI__NS_END
// Helper classes for code generation
PUGI__NS_BEGIN
struct opt_false
{
enum { value = 0 };
};
struct opt_true
{
enum { value = 1 };
};
PUGI__NS_END
// Unicode utilities
PUGI__NS_BEGIN
inline uint16_t endian_swap(uint16_t value)
{
return static_cast<uint16_t>(((value & 0xff) << 8) | (value >> 8));
}
inline uint32_t endian_swap(uint32_t value)
{
return ((value & 0xff) << 24) | ((value & 0xff00) << 8) | ((value & 0xff0000) >> 8) | (value >> 24);
}
struct utf8_counter
{
typedef size_t value_type;
static value_type low(value_type result, uint32_t ch)
{
// U+0000..U+007F
if (ch < 0x80) return result + 1;
// U+0080..U+07FF
else if (ch < 0x800) return result + 2;
// U+0800..U+FFFF
else return result + 3;
}
static value_type high(value_type result, uint32_t)
{
// U+10000..U+10FFFF
return result + 4;
}
};
struct utf8_writer
{
typedef uint8_t* value_type;
static value_type low(value_type result, uint32_t ch)
{
// U+0000..U+007F
if (ch < 0x80)
{
*result = static_cast<uint8_t>(ch);
return result + 1;
}
// U+0080..U+07FF
else if (ch < 0x800)
{
result[0] = static_cast<uint8_t>(0xC0 | (ch >> 6));
result[1] = static_cast<uint8_t>(0x80 | (ch & 0x3F));
return result + 2;
}
// U+0800..U+FFFF
else
{
result[0] = static_cast<uint8_t>(0xE0 | (ch >> 12));
result[1] = static_cast<uint8_t>(0x80 | ((ch >> 6) & 0x3F));
result[2] = static_cast<uint8_t>(0x80 | (ch & 0x3F));
return result + 3;
}
}
static value_type high(value_type result, uint32_t ch)
{
// U+10000..U+10FFFF
result[0] = static_cast<uint8_t>(0xF0 | (ch >> 18));
result[1] = static_cast<uint8_t>(0x80 | ((ch >> 12) & 0x3F));
result[2] = static_cast<uint8_t>(0x80 | ((ch >> 6) & 0x3F));
result[3] = static_cast<uint8_t>(0x80 | (ch & 0x3F));
return result + 4;
}
static value_type any(value_type result, uint32_t ch)
{
return (ch < 0x10000) ? low(result, ch) : high(result, ch);
}
};
struct utf16_counter
{
typedef size_t value_type;
static value_type low(value_type result, uint32_t)
{
return result + 1;
}
static value_type high(value_type result, uint32_t)
{
return result + 2;
}
};
struct utf16_writer
{
typedef uint16_t* value_type;
static value_type low(value_type result, uint32_t ch)
{
*result = static_cast<uint16_t>(ch);
return result + 1;
}
static value_type high(value_type result, uint32_t ch)
{
uint32_t msh = static_cast<uint32_t>(ch - 0x10000) >> 10;
uint32_t lsh = static_cast<uint32_t>(ch - 0x10000) & 0x3ff;
result[0] = static_cast<uint16_t>(0xD800 + msh);
result[1] = static_cast<uint16_t>(0xDC00 + lsh);
return result + 2;
}
static value_type any(value_type result, uint32_t ch)
{
return (ch < 0x10000) ? low(result, ch) : high(result, ch);
}
};
struct utf32_counter
{
typedef size_t value_type;
static value_type low(value_type result, uint32_t)
{
return result + 1;
}
static value_type high(value_type result, uint32_t)
{
return result + 1;
}
};
struct utf32_writer
{
typedef uint32_t* value_type;
static value_type low(value_type result, uint32_t ch)
{
*result = ch;
return result + 1;
}
static value_type high(value_type result, uint32_t ch)
{
*result = ch;
return result + 1;
}
static value_type any(value_type result, uint32_t ch)
{
*result = ch;
return result + 1;
}
};
struct latin1_writer
{
typedef uint8_t* value_type;
static value_type low(value_type result, uint32_t ch)
{
*result = static_cast<uint8_t>(ch > 255 ? '?' : ch);
return result + 1;
}
static value_type high(value_type result, uint32_t ch)
{
(void)ch;
*result = '?';
return result + 1;
}
};
struct utf8_decoder
{
typedef uint8_t type;
template <typename Traits> static inline typename Traits::value_type process(const uint8_t* data, size_t size, typename Traits::value_type result, Traits)
{
const uint8_t utf8_byte_mask = 0x3f;
while (size)
{
uint8_t lead = *data;
// 0xxxxxxx -> U+0000..U+007F
if (lead < 0x80)
{
result = Traits::low(result, lead);
data += 1;
size -= 1;
// process aligned single-byte (ascii) blocks
if ((reinterpret_cast<uintptr_t>(data) & 3) == 0)
{
// round-trip through void* to silence 'cast increases required alignment of target type' warnings
while (size >= 4 && (*static_cast<const uint32_t*>(static_cast<const void*>(data)) & 0x80808080) == 0)
{
result = Traits::low(result, data[0]);
result = Traits::low(result, data[1]);
result = Traits::low(result, data[2]);
result = Traits::low(result, data[3]);
data += 4;
size -= 4;
}
}
}
// 110xxxxx -> U+0080..U+07FF
else if (static_cast<unsigned int>(lead - 0xC0) < 0x20 && size >= 2 && (data[1] & 0xc0) == 0x80)
{
result = Traits::low(result, ((lead & ~0xC0) << 6) | (data[1] & utf8_byte_mask));
data += 2;
size -= 2;
}
// 1110xxxx -> U+0800-U+FFFF
else if (static_cast<unsigned int>(lead - 0xE0) < 0x10 && size >= 3 && (data[1] & 0xc0) == 0x80 && (data[2] & 0xc0) == 0x80)
{
result = Traits::low(result, ((lead & ~0xE0) << 12) | ((data[1] & utf8_byte_mask) << 6) | (data[2] & utf8_byte_mask));
data += 3;
size -= 3;
}
// 11110xxx -> U+10000..U+10FFFF
else if (static_cast<unsigned int>(lead - 0xF0) < 0x08 && size >= 4 && (data[1] & 0xc0) == 0x80 && (data[2] & 0xc0) == 0x80 && (data[3] & 0xc0) == 0x80)
{
result = Traits::high(result, ((lead & ~0xF0) << 18) | ((data[1] & utf8_byte_mask) << 12) | ((data[2] & utf8_byte_mask) << 6) | (data[3] & utf8_byte_mask));
data += 4;
size -= 4;
}
// 10xxxxxx or 11111xxx -> invalid
else
{
data += 1;
size -= 1;
}
}
return result;
}
};
template <typename opt_swap> struct utf16_decoder
{
typedef uint16_t type;
template <typename Traits> static inline typename Traits::value_type process(const uint16_t* data, size_t size, typename Traits::value_type result, Traits)
{
while (size)
{
uint16_t lead = opt_swap::value ? endian_swap(*data) : *data;
// U+0000..U+D7FF
if (lead < 0xD800)
{
result = Traits::low(result, lead);
data += 1;
size -= 1;
}
// U+E000..U+FFFF
else if (static_cast<unsigned int>(lead - 0xE000) < 0x2000)
{
result = Traits::low(result, lead);
data += 1;
size -= 1;
}
// surrogate pair lead
else if (static_cast<unsigned int>(lead - 0xD800) < 0x400 && size >= 2)
{
uint16_t next = opt_swap::value ? endian_swap(data[1]) : data[1];
if (static_cast<unsigned int>(next - 0xDC00) < 0x400)
{
result = Traits::high(result, 0x10000 + ((lead & 0x3ff) << 10) + (next & 0x3ff));
data += 2;
size -= 2;
}
else
{
data += 1;
size -= 1;
}
}
else
{
data += 1;
size -= 1;
}
}
return result;
}
};
template <typename opt_swap> struct utf32_decoder
{
typedef uint32_t type;
template <typename Traits> static inline typename Traits::value_type process(const uint32_t* data, size_t size, typename Traits::value_type result, Traits)
{
while (size)
{
uint32_t lead = opt_swap::value ? endian_swap(*data) : *data;
// U+0000..U+FFFF
if (lead < 0x10000)
{
result = Traits::low(result, lead);
data += 1;
size -= 1;
}
// U+10000..U+10FFFF
else
{
result = Traits::high(result, lead);
data += 1;
size -= 1;
}
}
return result;
}
};
struct latin1_decoder
{
typedef uint8_t type;
template <typename Traits> static inline typename Traits::value_type process(const uint8_t* data, size_t size, typename Traits::value_type result, Traits)
{
while (size)
{
result = Traits::low(result, *data);
data += 1;
size -= 1;
}
return result;
}
};
template <size_t size> struct wchar_selector;
template <> struct wchar_selector<2>
{
typedef uint16_t type;
typedef utf16_counter counter;
typedef utf16_writer writer;
typedef utf16_decoder<opt_false> decoder;
};
template <> struct wchar_selector<4>
{
typedef uint32_t type;
typedef utf32_counter counter;
typedef utf32_writer writer;
typedef utf32_decoder<opt_false> decoder;
};
typedef wchar_selector<sizeof(wchar_t)>::counter wchar_counter;
typedef wchar_selector<sizeof(wchar_t)>::writer wchar_writer;
struct wchar_decoder
{
typedef wchar_t type;
template <typename Traits> static inline typename Traits::value_type process(const wchar_t* data, size_t size, typename Traits::value_type result, Traits traits)
{
typedef wchar_selector<sizeof(wchar_t)>::decoder decoder;
return decoder::process(reinterpret_cast<const typename decoder::type*>(data), size, result, traits);
}
};
#ifdef PUGIXML_WCHAR_MODE
PUGI__FN void convert_wchar_endian_swap(wchar_t* result, const wchar_t* data, size_t length)
{
for (size_t i = 0; i < length; ++i)
result[i] = static_cast<wchar_t>(endian_swap(static_cast<wchar_selector<sizeof(wchar_t)>::type>(data[i])));
}
#endif
PUGI__NS_END
PUGI__NS_BEGIN
enum chartype_t
{
ct_parse_pcdata = 1, // \0, &, \r, <
ct_parse_attr = 2, // \0, &, \r, ', "
ct_parse_attr_ws = 4, // \0, &, \r, ', ", \n, tab
ct_space = 8, // \r, \n, space, tab
ct_parse_cdata = 16, // \0, ], >, \r
ct_parse_comment = 32, // \0, -, >, \r
ct_symbol = 64, // Any symbol > 127, a-z, A-Z, 0-9, _, :, -, .
ct_start_symbol = 128 // Any symbol > 127, a-z, A-Z, _, :
};
static const unsigned char chartype_table[256] =
{
55, 0, 0, 0, 0, 0, 0, 0, 0, 12, 12, 0, 0, 63, 0, 0, // 0-15
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 16-31
8, 0, 6, 0, 0, 0, 7, 6, 0, 0, 0, 0, 0, 96, 64, 0, // 32-47
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 192, 0, 1, 0, 48, 0, // 48-63
0, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, // 64-79
192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 0, 0, 16, 0, 192, // 80-95
0, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, // 96-111
192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 0, 0, 0, 0, 0, // 112-127
192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, // 128+
192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192,
192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192,
192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192,
192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192,
192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192,
192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192,
192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192, 192
};
enum chartypex_t
{
ctx_special_pcdata = 1, // Any symbol >= 0 and < 32 (except \t, \r, \n), &, <, >
ctx_special_attr = 2, // Any symbol >= 0 and < 32, &, <, ", '
ctx_start_symbol = 4, // Any symbol > 127, a-z, A-Z, _
ctx_digit = 8, // 0-9
ctx_symbol = 16 // Any symbol > 127, a-z, A-Z, 0-9, _, -, .
};
static const unsigned char chartypex_table[256] =
{
3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 3, 2, 3, 3, // 0-15
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, // 16-31
0, 0, 2, 0, 0, 0, 3, 2, 0, 0, 0, 0, 0, 16, 16, 0, // 32-47
24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 0, 0, 3, 0, 1, 0, // 48-63
0, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, // 64-79
20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 0, 0, 0, 0, 20, // 80-95
0, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, // 96-111
20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 0, 0, 0, 0, 0, // 112-127
20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, // 128+
20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,
20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20
};
#ifdef PUGIXML_WCHAR_MODE
#define PUGI__IS_CHARTYPE_IMPL(c, ct, table) ((static_cast<unsigned int>(c) < 128 ? table[static_cast<unsigned int>(c)] : table[128]) & (ct))
#else
#define PUGI__IS_CHARTYPE_IMPL(c, ct, table) (table[static_cast<unsigned char>(c)] & (ct))
#endif
#define PUGI__IS_CHARTYPE(c, ct) PUGI__IS_CHARTYPE_IMPL(c, ct, chartype_table)
#define PUGI__IS_CHARTYPEX(c, ct) PUGI__IS_CHARTYPE_IMPL(c, ct, chartypex_table)
PUGI__FN bool is_little_endian()
{
unsigned int ui = 1;
return *reinterpret_cast<unsigned char*>(&ui) == 1;
}
PUGI__FN xml_encoding get_wchar_encoding()
{
PUGI__STATIC_ASSERT(sizeof(wchar_t) == 2 || sizeof(wchar_t) == 4);
if (sizeof(wchar_t) == 2)
return is_little_endian() ? encoding_utf16_le : encoding_utf16_be;
else
return is_little_endian() ? encoding_utf32_le : encoding_utf32_be;
}
PUGI__FN bool parse_declaration_encoding(const uint8_t* data, size_t size, const uint8_t*& out_encoding, size_t& out_length)
{
#define PUGI__SCANCHAR(ch) { if (offset >= size || data[offset] != ch) return false; offset++; }
#define PUGI__SCANCHARTYPE(ct) { while (offset < size && PUGI__IS_CHARTYPE(data[offset], ct)) offset++; }
// check if we have a non-empty XML declaration
if (size < 6 || !((data[0] == '<') & (data[1] == '?') & (data[2] == 'x') & (data[3] == 'm') & (data[4] == 'l') && PUGI__IS_CHARTYPE(data[5], ct_space)))
return false;
// scan XML declaration until the encoding field
for (size_t i = 6; i + 1 < size; ++i)
{
// declaration can not contain ? in quoted values
if (data[i] == '?')
return false;
if (data[i] == 'e' && data[i + 1] == 'n')
{
size_t offset = i;
// encoding follows the version field which can't contain 'en' so this has to be the encoding if XML is well formed
PUGI__SCANCHAR('e'); PUGI__SCANCHAR('n'); PUGI__SCANCHAR('c'); PUGI__SCANCHAR('o');
PUGI__SCANCHAR('d'); PUGI__SCANCHAR('i'); PUGI__SCANCHAR('n'); PUGI__SCANCHAR('g');
// S? = S?
PUGI__SCANCHARTYPE(ct_space);
PUGI__SCANCHAR('=');
PUGI__SCANCHARTYPE(ct_space);
// the only two valid delimiters are ' and "
uint8_t delimiter = (offset < size && data[offset] == '"') ? '"' : '\'';
PUGI__SCANCHAR(delimiter);
size_t start = offset;
out_encoding = data + offset;
PUGI__SCANCHARTYPE(ct_symbol);
out_length = offset - start;
PUGI__SCANCHAR(delimiter);
return true;
}
}
return false;
#undef PUGI__SCANCHAR
#undef PUGI__SCANCHARTYPE
}
PUGI__FN xml_encoding guess_buffer_encoding(const uint8_t* data, size_t size)
{
// skip encoding autodetection if input buffer is too small
if (size < 4) return encoding_utf8;
uint8_t d0 = data[0], d1 = data[1], d2 = data[2], d3 = data[3];
// look for BOM in first few bytes
if (d0 == 0 && d1 == 0 && d2 == 0xfe && d3 == 0xff) return encoding_utf32_be;
if (d0 == 0xff && d1 == 0xfe && d2 == 0 && d3 == 0) return encoding_utf32_le;
if (d0 == 0xfe && d1 == 0xff) return encoding_utf16_be;
if (d0 == 0xff && d1 == 0xfe) return encoding_utf16_le;
if (d0 == 0xef && d1 == 0xbb && d2 == 0xbf) return encoding_utf8;
// look for <, <? or <?xm in various encodings
if (d0 == 0 && d1 == 0 && d2 == 0 && d3 == 0x3c) return encoding_utf32_be;
if (d0 == 0x3c && d1 == 0 && d2 == 0 && d3 == 0) return encoding_utf32_le;
if (d0 == 0 && d1 == 0x3c && d2 == 0 && d3 == 0x3f) return encoding_utf16_be;
if (d0 == 0x3c && d1 == 0 && d2 == 0x3f && d3 == 0) return encoding_utf16_le;
// look for utf16 < followed by node name (this may fail, but is better than utf8 since it's zero terminated so early)
if (d0 == 0 && d1 == 0x3c) return encoding_utf16_be;
if (d0 == 0x3c && d1 == 0) return encoding_utf16_le;
// no known BOM detected; parse declaration
const uint8_t* enc = 0;
size_t enc_length = 0;
if (d0 == 0x3c && d1 == 0x3f && d2 == 0x78 && d3 == 0x6d && parse_declaration_encoding(data, size, enc, enc_length))
{
// iso-8859-1 (case-insensitive)
if (enc_length == 10
&& (enc[0] | ' ') == 'i' && (enc[1] | ' ') == 's' && (enc[2] | ' ') == 'o'
&& enc[3] == '-' && enc[4] == '8' && enc[5] == '8' && enc[6] == '5' && enc[7] == '9'
&& enc[8] == '-' && enc[9] == '1')
return encoding_latin1;
// latin1 (case-insensitive)
if (enc_length == 6
&& (enc[0] | ' ') == 'l' && (enc[1] | ' ') == 'a' && (enc[2] | ' ') == 't'
&& (enc[3] | ' ') == 'i' && (enc[4] | ' ') == 'n'
&& enc[5] == '1')
return encoding_latin1;
}
return encoding_utf8;
}
PUGI__FN xml_encoding get_buffer_encoding(xml_encoding encoding, const void* contents, size_t size)
{
// replace wchar encoding with utf implementation
if (encoding == encoding_wchar) return get_wchar_encoding();
// replace utf16 encoding with utf16 with specific endianness
if (encoding == encoding_utf16) return is_little_endian() ? encoding_utf16_le : encoding_utf16_be;
// replace utf32 encoding with utf32 with specific endianness
if (encoding == encoding_utf32) return is_little_endian() ? encoding_utf32_le : encoding_utf32_be;
// only do autodetection if no explicit encoding is requested
if (encoding != encoding_auto) return encoding;
// try to guess encoding (based on XML specification, Appendix F.1)
const uint8_t* data = static_cast<const uint8_t*>(contents);
return guess_buffer_encoding(data, size);
}
PUGI__FN bool get_mutable_buffer(char_t*& out_buffer, size_t& out_length, const void* contents, size_t size, bool is_mutable)
{
size_t length = size / sizeof(char_t);
if (is_mutable)
{
out_buffer = static_cast<char_t*>(const_cast<void*>(contents));
out_length = length;
}
else
{
char_t* buffer = static_cast<char_t*>(xml_memory::allocate((length + 1) * sizeof(char_t)));
if (!buffer) return false;
if (contents)
memcpy(buffer, contents, length * sizeof(char_t));
else
assert(length == 0);
buffer[length] = 0;
out_buffer = buffer;
out_length = length + 1;
}
return true;
}
#ifdef PUGIXML_WCHAR_MODE
PUGI__FN bool need_endian_swap_utf(xml_encoding le, xml_encoding re)
{
return (le == encoding_utf16_be && re == encoding_utf16_le) || (le == encoding_utf16_le && re == encoding_utf16_be) ||
(le == encoding_utf32_be && re == encoding_utf32_le) || (le == encoding_utf32_le && re == encoding_utf32_be);
}
PUGI__FN bool convert_buffer_endian_swap(char_t*& out_buffer, size_t& out_length, const void* contents, size_t size, bool is_mutable)
{
const char_t* data = static_cast<const char_t*>(contents);
size_t length = size / sizeof(char_t);
if (is_mutable)
{
char_t* buffer = const_cast<char_t*>(data);
convert_wchar_endian_swap(buffer, data, length);
out_buffer = buffer;
out_length = length;
}
else
{
char_t* buffer = static_cast<char_t*>(xml_memory::allocate((length + 1) * sizeof(char_t)));
if (!buffer) return false;
convert_wchar_endian_swap(buffer, data, length);
buffer[length] = 0;
out_buffer = buffer;
out_length = length + 1;
}
return true;
}
template <typename D> PUGI__FN bool convert_buffer_generic(char_t*& out_buffer, size_t& out_length, const void* contents, size_t size, D)
{
const typename D::type* data = static_cast<const typename D::type*>(contents);
size_t data_length = size / sizeof(typename D::type);
// first pass: get length in wchar_t units
size_t length = D::process(data, data_length, 0, wchar_counter());
// allocate buffer of suitable length
char_t* buffer = static_cast<char_t*>(xml_memory::allocate((length + 1) * sizeof(char_t)));
if (!buffer) return false;
// second pass: convert utf16 input to wchar_t
wchar_writer::value_type obegin = reinterpret_cast<wchar_writer::value_type>(buffer);
wchar_writer::value_type oend = D::process(data, data_length, obegin, wchar_writer());
assert(oend == obegin + length);
*oend = 0;
out_buffer = buffer;
out_length = length + 1;
return true;
}
PUGI__FN bool convert_buffer(char_t*& out_buffer, size_t& out_length, xml_encoding encoding, const void* contents, size_t size, bool is_mutable)
{
// get native encoding
xml_encoding wchar_encoding = get_wchar_encoding();
// fast path: no conversion required
if (encoding == wchar_encoding)
return get_mutable_buffer(out_buffer, out_length, contents, size, is_mutable);
// only endian-swapping is required
if (need_endian_swap_utf(encoding, wchar_encoding))
return convert_buffer_endian_swap(out_buffer, out_length, contents, size, is_mutable);
// source encoding is utf8
if (encoding == encoding_utf8)
return convert_buffer_generic(out_buffer, out_length, contents, size, utf8_decoder());
// source encoding is utf16
if (encoding == encoding_utf16_be || encoding == encoding_utf16_le)
{
xml_encoding native_encoding = is_little_endian() ? encoding_utf16_le : encoding_utf16_be;
return (native_encoding == encoding) ?
convert_buffer_generic(out_buffer, out_length, contents, size, utf16_decoder<opt_false>()) :
convert_buffer_generic(out_buffer, out_length, contents, size, utf16_decoder<opt_true>());
}
// source encoding is utf32
if (encoding == encoding_utf32_be || encoding == encoding_utf32_le)
{
xml_encoding native_encoding = is_little_endian() ? encoding_utf32_le : encoding_utf32_be;
return (native_encoding == encoding) ?
convert_buffer_generic(out_buffer, out_length, contents, size, utf32_decoder<opt_false>()) :
convert_buffer_generic(out_buffer, out_length, contents, size, utf32_decoder<opt_true>());
}
// source encoding is latin1
if (encoding == encoding_latin1)
return convert_buffer_generic(out_buffer, out_length, contents, size, latin1_decoder());
assert(false && "Invalid encoding"); // unreachable
return false;
}
#else
template <typename D> PUGI__FN bool convert_buffer_generic(char_t*& out_buffer, size_t& out_length, const void* contents, size_t size, D)
{
const typename D::type* data = static_cast<const typename D::type*>(contents);
size_t data_length = size / sizeof(typename D::type);
// first pass: get length in utf8 units
size_t length = D::process(data, data_length, 0, utf8_counter());
// allocate buffer of suitable length
char_t* buffer = static_cast<char_t*>(xml_memory::allocate((length + 1) * sizeof(char_t)));
if (!buffer) return false;
// second pass: convert utf16 input to utf8
uint8_t* obegin = reinterpret_cast<uint8_t*>(buffer);
uint8_t* oend = D::process(data, data_length, obegin, utf8_writer());
assert(oend == obegin + length);
*oend = 0;
out_buffer = buffer;
out_length = length + 1;
return true;
}
PUGI__FN size_t get_latin1_7bit_prefix_length(const uint8_t* data, size_t size)
{
for (size_t i = 0; i < size; ++i)
if (data[i] > 127)
return i;
return size;
}
PUGI__FN bool convert_buffer_latin1(char_t*& out_buffer, size_t& out_length, const void* contents, size_t size, bool is_mutable)
{
const uint8_t* data = static_cast<const uint8_t*>(contents);
size_t data_length = size;
// get size of prefix that does not need utf8 conversion
size_t prefix_length = get_latin1_7bit_prefix_length(data, data_length);
assert(prefix_length <= data_length);
const uint8_t* postfix = data + prefix_length;
size_t postfix_length = data_length - prefix_length;
// if no conversion is needed, just return the original buffer
if (postfix_length == 0) return get_mutable_buffer(out_buffer, out_length, contents, size, is_mutable);
// first pass: get length in utf8 units
size_t length = prefix_length + latin1_decoder::process(postfix, postfix_length, 0, utf8_counter());
// allocate buffer of suitable length
char_t* buffer = static_cast<char_t*>(xml_memory::allocate((length + 1) * sizeof(char_t)));
if (!buffer) return false;
// second pass: convert latin1 input to utf8
memcpy(buffer, data, prefix_length);
uint8_t* obegin = reinterpret_cast<uint8_t*>(buffer);
uint8_t* oend = latin1_decoder::process(postfix, postfix_length, obegin + prefix_length, utf8_writer());
assert(oend == obegin + length);
*oend = 0;
out_buffer = buffer;
out_length = length + 1;
return true;
}
PUGI__FN bool convert_buffer(char_t*& out_buffer, size_t& out_length, xml_encoding encoding, const void* contents, size_t size, bool is_mutable)
{
// fast path: no conversion required
if (encoding == encoding_utf8)
return get_mutable_buffer(out_buffer, out_length, contents, size, is_mutable);
// source encoding is utf16
if (encoding == encoding_utf16_be || encoding == encoding_utf16_le)
{
xml_encoding native_encoding = is_little_endian() ? encoding_utf16_le : encoding_utf16_be;
return (native_encoding == encoding) ?
convert_buffer_generic(out_buffer, out_length, contents, size, utf16_decoder<opt_false>()) :
convert_buffer_generic(out_buffer, out_length, contents, size, utf16_decoder<opt_true>());
}
// source encoding is utf32
if (encoding == encoding_utf32_be || encoding == encoding_utf32_le)
{
xml_encoding native_encoding = is_little_endian() ? encoding_utf32_le : encoding_utf32_be;
return (native_encoding == encoding) ?
convert_buffer_generic(out_buffer, out_length, contents, size, utf32_decoder<opt_false>()) :
convert_buffer_generic(out_buffer, out_length, contents, size, utf32_decoder<opt_true>());
}
// source encoding is latin1
if (encoding == encoding_latin1)
return convert_buffer_latin1(out_buffer, out_length, contents, size, is_mutable);
assert(false && "Invalid encoding"); // unreachable
return false;
}
#endif
PUGI__FN size_t as_utf8_begin(const wchar_t* str, size_t length)
{
// get length in utf8 characters
return wchar_decoder::process(str, length, 0, utf8_counter());
}
PUGI__FN void as_utf8_end(char* buffer, size_t size, const wchar_t* str, size_t length)
{
// convert to utf8
uint8_t* begin = reinterpret_cast<uint8_t*>(buffer);
uint8_t* end = wchar_decoder::process(str, length, begin, utf8_writer());
assert(begin + size == end);
(void)!end;
(void)!size;
}
#ifndef PUGIXML_NO_STL
PUGI__FN std::string as_utf8_impl(const wchar_t* str, size_t length)
{
// first pass: get length in utf8 characters
size_t size = as_utf8_begin(str, length);
// allocate resulting string
std::string result;
result.resize(size);
// second pass: convert to utf8
if (size > 0) as_utf8_end(&result[0], size, str, length);
return result;
}
PUGI__FN std::basic_string<wchar_t> as_wide_impl(const char* str, size_t size)
{
const uint8_t* data = reinterpret_cast<const uint8_t*>(str);
// first pass: get length in wchar_t units
size_t length = utf8_decoder::process(data, size, 0, wchar_counter());
// allocate resulting string
std::basic_string<wchar_t> result;
result.resize(length);
// second pass: convert to wchar_t
if (length > 0)
{
wchar_writer::value_type begin = reinterpret_cast<wchar_writer::value_type>(&result[0]);
wchar_writer::value_type end = utf8_decoder::process(data, size, begin, wchar_writer());
assert(begin + length == end);
(void)!end;
}
return result;
}
#endif
template <typename Header>
inline bool strcpy_insitu_allow(size_t length, const Header& header, uintptr_t header_mask, char_t* target)
{
// never reuse shared memory
if (header & xml_memory_page_contents_shared_mask) return false;
size_t target_length = strlength(target);
// always reuse document buffer memory if possible
if ((header & header_mask) == 0) return target_length >= length;
// reuse heap memory if waste is not too great
const size_t reuse_threshold = 32;
return target_length >= length && (target_length < reuse_threshold || target_length - length < target_length / 2);
}
template <typename String, typename Header>
PUGI__FN bool strcpy_insitu(String& dest, Header& header, uintptr_t header_mask, const char_t* source, size_t source_length)
{
if (source_length == 0)
{
// empty string and null pointer are equivalent, so just deallocate old memory
xml_allocator* alloc = PUGI__GETPAGE_IMPL(header)->allocator;
if (header & header_mask) alloc->deallocate_string(dest);
// mark the string as not allocated
dest = 0;
header &= ~header_mask;
return true;
}
else if (dest && strcpy_insitu_allow(source_length, header, header_mask, dest))
{
// we can reuse old buffer, so just copy the new data (including zero terminator)
memcpy(dest, source, source_length * sizeof(char_t));
dest[source_length] = 0;
return true;
}
else
{
xml_allocator* alloc = PUGI__GETPAGE_IMPL(header)->allocator;
if (!alloc->reserve()) return false;
// allocate new buffer
char_t* buf = alloc->allocate_string(source_length + 1);
if (!buf) return false;
// copy the string (including zero terminator)
memcpy(buf, source, source_length * sizeof(char_t));
buf[source_length] = 0;
// deallocate old buffer (*after* the above to protect against overlapping memory and/or allocation failures)
if (header & header_mask) alloc->deallocate_string(dest);
// the string is now allocated, so set the flag
dest = buf;
header |= header_mask;
return true;
}
}
struct gap
{
char_t* end;
size_t size;
gap(): end(0), size(0)
{
}
// Push new gap, move s count bytes further (skipping the gap).
// Collapse previous gap.
void push(char_t*& s, size_t count)
{
if (end) // there was a gap already; collapse it
{
// Move [old_gap_end, new_gap_start) to [old_gap_start, ...)
assert(s >= end);
memmove(end - size, end, reinterpret_cast<char*>(s) - reinterpret_cast<char*>(end));
}
s += count; // end of current gap
// "merge" two gaps
end = s;
size += count;
}
// Collapse all gaps, return past-the-end pointer
char_t* flush(char_t* s)
{
if (end)
{
// Move [old_gap_end, current_pos) to [old_gap_start, ...)
assert(s >= end);
memmove(end - size, end, reinterpret_cast<char*>(s) - reinterpret_cast<char*>(end));
return s - size;
}
else return s;
}
};
PUGI__FN char_t* strconv_escape(char_t* s, gap& g)
{
char_t* stre = s + 1;
switch (*stre)
{
case '#': // &#...
{
unsigned int ucsc = 0;
if (stre[1] == 'x') // &#x... (hex code)
{
stre += 2;
char_t ch = *stre;
if (ch == ';') return stre;
for (;;)
{
if (static_cast<unsigned int>(ch - '0') <= 9)
ucsc = 16 * ucsc + (ch - '0');
else if (static_cast<unsigned int>((ch | ' ') - 'a') <= 5)
ucsc = 16 * ucsc + ((ch | ' ') - 'a' + 10);
else if (ch == ';')
break;
else // cancel
return stre;
ch = *++stre;
}
++stre;
}
else // &#... (dec code)
{
char_t ch = *++stre;
if (ch == ';') return stre;
for (;;)
{
if (static_cast<unsigned int>(ch - '0') <= 9)
ucsc = 10 * ucsc + (ch - '0');
else if (ch == ';')
break;
else // cancel
return stre;
ch = *++stre;
}
++stre;
}
#ifdef PUGIXML_WCHAR_MODE
s = reinterpret_cast<char_t*>(wchar_writer::any(reinterpret_cast<wchar_writer::value_type>(s), ucsc));
#else
s = reinterpret_cast<char_t*>(utf8_writer::any(reinterpret_cast<uint8_t*>(s), ucsc));
#endif
g.push(s, stre - s);
return stre;
}
case 'a': // &a
{
++stre;
if (*stre == 'm') // &am
{
if (*++stre == 'p' && *++stre == ';') // &amp;
{
*s++ = '&';
++stre;
g.push(s, stre - s);
return stre;
}
}
else if (*stre == 'p') // &ap
{
if (*++stre == 'o' && *++stre == 's' && *++stre == ';') // &apos;
{
*s++ = '\'';
++stre;
g.push(s, stre - s);
return stre;
}
}
break;
}
case 'g': // &g
{
if (*++stre == 't' && *++stre == ';') // &gt;
{
*s++ = '>';
++stre;
g.push(s, stre - s);
return stre;
}
break;
}
case 'l': // &l
{
if (*++stre == 't' && *++stre == ';') // &lt;
{
*s++ = '<';
++stre;
g.push(s, stre - s);
return stre;
}
break;
}
case 'q': // &q
{
if (*++stre == 'u' && *++stre == 'o' && *++stre == 't' && *++stre == ';') // &quot;
{
*s++ = '"';
++stre;
g.push(s, stre - s);
return stre;
}
break;
}
default:
break;
}
return stre;
}
// Parser utilities
#define PUGI__ENDSWITH(c, e) ((c) == (e) || ((c) == 0 && endch == (e)))
#define PUGI__SKIPWS() { while (PUGI__IS_CHARTYPE(*s, ct_space)) ++s; }
#define PUGI__OPTSET(OPT) ( optmsk & (OPT) )
#define PUGI__PUSHNODE(TYPE) { cursor = append_new_node(cursor, *alloc, TYPE); if (!cursor) PUGI__THROW_ERROR(status_out_of_memory, s); }
#define PUGI__POPNODE() { cursor = cursor->parent; }
#define PUGI__SCANFOR(X) { while (*s != 0 && !(X)) ++s; }
#define PUGI__SCANWHILE(X) { while (X) ++s; }
#define PUGI__SCANWHILE_UNROLL(X) { for (;;) { char_t ss = s[0]; if (PUGI__UNLIKELY(!(X))) { break; } ss = s[1]; if (PUGI__UNLIKELY(!(X))) { s += 1; break; } ss = s[2]; if (PUGI__UNLIKELY(!(X))) { s += 2; break; } ss = s[3]; if (PUGI__UNLIKELY(!(X))) { s += 3; break; } s += 4; } }
#define PUGI__ENDSEG() { ch = *s; *s = 0; ++s; }
#define PUGI__THROW_ERROR(err, m) return error_offset = m, error_status = err, static_cast<char_t*>(0)
#define PUGI__CHECK_ERROR(err, m) { if (*s == 0) PUGI__THROW_ERROR(err, m); }
PUGI__FN char_t* strconv_comment(char_t* s, char_t endch)
{
gap g;
while (true)
{
PUGI__SCANWHILE_UNROLL(!PUGI__IS_CHARTYPE(ss, ct_parse_comment));
if (*s == '\r') // Either a single 0x0d or 0x0d 0x0a pair
{
*s++ = '\n'; // replace first one with 0x0a
if (*s == '\n') g.push(s, 1);
}
else if (s[0] == '-' && s[1] == '-' && PUGI__ENDSWITH(s[2], '>')) // comment ends here
{
*g.flush(s) = 0;
return s + (s[2] == '>' ? 3 : 2);
}
else if (*s == 0)
{
return 0;
}
else ++s;
}
}
PUGI__FN char_t* strconv_cdata(char_t* s, char_t endch)
{
gap g;
while (true)
{
PUGI__SCANWHILE_UNROLL(!PUGI__IS_CHARTYPE(ss, ct_parse_cdata));
if (*s == '\r') // Either a single 0x0d or 0x0d 0x0a pair
{
*s++ = '\n'; // replace first one with 0x0a
if (*s == '\n') g.push(s, 1);
}
else if (s[0] == ']' && s[1] == ']' && PUGI__ENDSWITH(s[2], '>')) // CDATA ends here
{
*g.flush(s) = 0;
return s + 1;
}
else if (*s == 0)
{
return 0;
}
else ++s;
}
}
typedef char_t* (*strconv_pcdata_t)(char_t*);
template <typename opt_trim, typename opt_eol, typename opt_escape> struct strconv_pcdata_impl
{
static char_t* parse(char_t* s)
{
gap g;
char_t* begin = s;
while (true)
{
PUGI__SCANWHILE_UNROLL(!PUGI__IS_CHARTYPE(ss, ct_parse_pcdata));
if (*s == '<') // PCDATA ends here
{
char_t* end = g.flush(s);
if (opt_trim::value)
while (end > begin && PUGI__IS_CHARTYPE(end[-1], ct_space))
--end;
*end = 0;
return s + 1;
}
else if (opt_eol::value && *s == '\r') // Either a single 0x0d or 0x0d 0x0a pair
{
*s++ = '\n'; // replace first one with 0x0a
if (*s == '\n') g.push(s, 1);
}
else if (opt_escape::value && *s == '&')
{
s = strconv_escape(s, g);
}
else if (*s == 0)
{
char_t* end = g.flush(s);
if (opt_trim::value)
while (end > begin && PUGI__IS_CHARTYPE(end[-1], ct_space))
--end;
*end = 0;
return s;
}
else ++s;
}
}
};
PUGI__FN strconv_pcdata_t get_strconv_pcdata(unsigned int optmask)
{
PUGI__STATIC_ASSERT(parse_escapes == 0x10 && parse_eol == 0x20 && parse_trim_pcdata == 0x0800);
switch (((optmask >> 4) & 3) | ((optmask >> 9) & 4)) // get bitmask for flags (trim eol escapes); this simultaneously checks 3 options from assertion above
{
case 0: return strconv_pcdata_impl<opt_false, opt_false, opt_false>::parse;
case 1: return strconv_pcdata_impl<opt_false, opt_false, opt_true>::parse;
case 2: return strconv_pcdata_impl<opt_false, opt_true, opt_false>::parse;
case 3: return strconv_pcdata_impl<opt_false, opt_true, opt_true>::parse;
case 4: return strconv_pcdata_impl<opt_true, opt_false, opt_false>::parse;
case 5: return strconv_pcdata_impl<opt_true, opt_false, opt_true>::parse;
case 6: return strconv_pcdata_impl<opt_true, opt_true, opt_false>::parse;
case 7: return strconv_pcdata_impl<opt_true, opt_true, opt_true>::parse;
default: assert(false); return 0; // unreachable
}
}
typedef char_t* (*strconv_attribute_t)(char_t*, char_t);
template <typename opt_escape> struct strconv_attribute_impl
{
static char_t* parse_wnorm(char_t* s, char_t end_quote)
{
gap g;
// trim leading whitespaces
if (PUGI__IS_CHARTYPE(*s, ct_space))
{
char_t* str = s;
do ++str;
while (PUGI__IS_CHARTYPE(*str, ct_space));
g.push(s, str - s);
}
while (true)
{
PUGI__SCANWHILE_UNROLL(!PUGI__IS_CHARTYPE(ss, ct_parse_attr_ws | ct_space));
if (*s == end_quote)
{
char_t* str = g.flush(s);
do *str-- = 0;
while (PUGI__IS_CHARTYPE(*str, ct_space));
return s + 1;
}
else if (PUGI__IS_CHARTYPE(*s, ct_space))
{
*s++ = ' ';
if (PUGI__IS_CHARTYPE(*s, ct_space))
{
char_t* str = s + 1;
while (PUGI__IS_CHARTYPE(*str, ct_space)) ++str;
g.push(s, str - s);
}
}
else if (opt_escape::value && *s == '&')
{
s = strconv_escape(s, g);
}
else if (!*s)
{
return 0;
}
else ++s;
}
}
static char_t* parse_wconv(char_t* s, char_t end_quote)
{
gap g;
while (true)
{
PUGI__SCANWHILE_UNROLL(!PUGI__IS_CHARTYPE(ss, ct_parse_attr_ws));
if (*s == end_quote)
{
*g.flush(s) = 0;
return s + 1;
}
else if (PUGI__IS_CHARTYPE(*s, ct_space))
{
if (*s == '\r')
{
*s++ = ' ';
if (*s == '\n') g.push(s, 1);
}
else *s++ = ' ';
}
else if (opt_escape::value && *s == '&')
{
s = strconv_escape(s, g);
}
else if (!*s)
{
return 0;
}
else ++s;
}
}
static char_t* parse_eol(char_t* s, char_t end_quote)
{
gap g;
while (true)
{
PUGI__SCANWHILE_UNROLL(!PUGI__IS_CHARTYPE(ss, ct_parse_attr));
if (*s == end_quote)
{
*g.flush(s) = 0;
return s + 1;
}
else if (*s == '\r')
{
*s++ = '\n';
if (*s == '\n') g.push(s, 1);
}
else if (opt_escape::value && *s == '&')
{
s = strconv_escape(s, g);
}
else if (!*s)
{
return 0;
}
else ++s;
}
}
static char_t* parse_simple(char_t* s, char_t end_quote)
{
gap g;
while (true)
{
PUGI__SCANWHILE_UNROLL(!PUGI__IS_CHARTYPE(ss, ct_parse_attr));
if (*s == end_quote)
{
*g.flush(s) = 0;
return s + 1;
}
else if (opt_escape::value && *s == '&')
{
s = strconv_escape(s, g);
}
else if (!*s)
{
return 0;
}
else ++s;
}
}
};
PUGI__FN strconv_attribute_t get_strconv_attribute(unsigned int optmask)
{
PUGI__STATIC_ASSERT(parse_escapes == 0x10 && parse_eol == 0x20 && parse_wconv_attribute == 0x40 && parse_wnorm_attribute == 0x80);
switch ((optmask >> 4) & 15) // get bitmask for flags (wnorm wconv eol escapes); this simultaneously checks 4 options from assertion above
{
case 0: return strconv_attribute_impl<opt_false>::parse_simple;
case 1: return strconv_attribute_impl<opt_true>::parse_simple;
case 2: return strconv_attribute_impl<opt_false>::parse_eol;
case 3: return strconv_attribute_impl<opt_true>::parse_eol;
case 4: return strconv_attribute_impl<opt_false>::parse_wconv;
case 5: return strconv_attribute_impl<opt_true>::parse_wconv;
case 6: return strconv_attribute_impl<opt_false>::parse_wconv;
case 7: return strconv_attribute_impl<opt_true>::parse_wconv;
case 8: return strconv_attribute_impl<opt_false>::parse_wnorm;
case 9: return strconv_attribute_impl<opt_true>::parse_wnorm;
case 10: return strconv_attribute_impl<opt_false>::parse_wnorm;
case 11: return strconv_attribute_impl<opt_true>::parse_wnorm;
case 12: return strconv_attribute_impl<opt_false>::parse_wnorm;
case 13: return strconv_attribute_impl<opt_true>::parse_wnorm;
case 14: return strconv_attribute_impl<opt_false>::parse_wnorm;
case 15: return strconv_attribute_impl<opt_true>::parse_wnorm;
default: assert(false); return 0; // unreachable
}
}
inline xml_parse_result make_parse_result(xml_parse_status status, ptrdiff_t offset = 0)
{
xml_parse_result result;
result.status = status;
result.offset = offset;
return result;
}
struct xml_parser
{
xml_allocator* alloc;
char_t* error_offset;
xml_parse_status error_status;
xml_parser(xml_allocator* alloc_): alloc(alloc_), error_offset(0), error_status(status_ok)
{
}
// DOCTYPE consists of nested sections of the following possible types:
// <!-- ... -->, <? ... ?>, "...", '...'
// <![...]]>
// <!...>
// First group can not contain nested groups
// Second group can contain nested groups of the same type
// Third group can contain all other groups
char_t* parse_doctype_primitive(char_t* s)
{
if (*s == '"' || *s == '\'')
{
// quoted string
char_t ch = *s++;
PUGI__SCANFOR(*s == ch);
if (!*s) PUGI__THROW_ERROR(status_bad_doctype, s);
s++;
}
else if (s[0] == '<' && s[1] == '?')
{
// <? ... ?>
s += 2;
PUGI__SCANFOR(s[0] == '?' && s[1] == '>'); // no need for ENDSWITH because ?> can't terminate proper doctype
if (!*s) PUGI__THROW_ERROR(status_bad_doctype, s);
s += 2;
}
else if (s[0] == '<' && s[1] == '!' && s[2] == '-' && s[3] == '-')
{
s += 4;
PUGI__SCANFOR(s[0] == '-' && s[1] == '-' && s[2] == '>'); // no need for ENDSWITH because --> can't terminate proper doctype
if (!*s) PUGI__THROW_ERROR(status_bad_doctype, s);
s += 3;
}
else PUGI__THROW_ERROR(status_bad_doctype, s);
return s;
}
char_t* parse_doctype_ignore(char_t* s)
{
size_t depth = 0;
assert(s[0] == '<' && s[1] == '!' && s[2] == '[');
s += 3;
while (*s)
{
if (s[0] == '<' && s[1] == '!' && s[2] == '[')
{
// nested ignore section
s += 3;
depth++;
}
else if (s[0] == ']' && s[1] == ']' && s[2] == '>')
{
// ignore section end
s += 3;
if (depth == 0)
return s;
depth--;
}
else s++;
}
PUGI__THROW_ERROR(status_bad_doctype, s);
}
char_t* parse_doctype_group(char_t* s, char_t endch)
{
size_t depth = 0;
assert((s[0] == '<' || s[0] == 0) && s[1] == '!');
s += 2;
while (*s)
{
if (s[0] == '<' && s[1] == '!' && s[2] != '-')
{
if (s[2] == '[')
{
// ignore
s = parse_doctype_ignore(s);
if (!s) return s;
}
else
{
// some control group
s += 2;
depth++;
}
}
else if (s[0] == '<' || s[0] == '"' || s[0] == '\'')
{
// unknown tag (forbidden), or some primitive group
s = parse_doctype_primitive(s);
if (!s) return s;
}
else if (*s == '>')
{
if (depth == 0)
return s;
depth--;
s++;
}
else s++;
}
if (depth != 0 || endch != '>') PUGI__THROW_ERROR(status_bad_doctype, s);
return s;
}
char_t* parse_exclamation(char_t* s, xml_node_struct* cursor, unsigned int optmsk, char_t endch)
{
// parse node contents, starting with exclamation mark
++s;
if (*s == '-') // '<!-...'
{
++s;
if (*s == '-') // '<!--...'
{
++s;
if (PUGI__OPTSET(parse_comments))
{
PUGI__PUSHNODE(node_comment); // Append a new node on the tree.
cursor->value = s; // Save the offset.
}
if (PUGI__OPTSET(parse_eol) && PUGI__OPTSET(parse_comments))
{
s = strconv_comment(s, endch);
if (!s) PUGI__THROW_ERROR(status_bad_comment, cursor->value);
}
else
{
// Scan for terminating '-->'.
PUGI__SCANFOR(s[0] == '-' && s[1] == '-' && PUGI__ENDSWITH(s[2], '>'));
PUGI__CHECK_ERROR(status_bad_comment, s);
if (PUGI__OPTSET(parse_comments))
*s = 0; // Zero-terminate this segment at the first terminating '-'.
s += (s[2] == '>' ? 3 : 2); // Step over the '\0->'.
}
}
else PUGI__THROW_ERROR(status_bad_comment, s);
}
else if (*s == '[')
{
// '<![CDATA[...'
if (*++s=='C' && *++s=='D' && *++s=='A' && *++s=='T' && *++s=='A' && *++s == '[')
{
++s;
if (PUGI__OPTSET(parse_cdata))
{
PUGI__PUSHNODE(node_cdata); // Append a new node on the tree.
cursor->value = s; // Save the offset.
if (PUGI__OPTSET(parse_eol))
{
s = strconv_cdata(s, endch);
if (!s) PUGI__THROW_ERROR(status_bad_cdata, cursor->value);
}
else
{
// Scan for terminating ']]>'.
PUGI__SCANFOR(s[0] == ']' && s[1] == ']' && PUGI__ENDSWITH(s[2], '>'));
PUGI__CHECK_ERROR(status_bad_cdata, s);
*s++ = 0; // Zero-terminate this segment.
}
}
else // Flagged for discard, but we still have to scan for the terminator.
{
// Scan for terminating ']]>'.
PUGI__SCANFOR(s[0] == ']' && s[1] == ']' && PUGI__ENDSWITH(s[2], '>'));
PUGI__CHECK_ERROR(status_bad_cdata, s);
++s;
}
s += (s[1] == '>' ? 2 : 1); // Step over the last ']>'.
}
else PUGI__THROW_ERROR(status_bad_cdata, s);
}
else if (s[0] == 'D' && s[1] == 'O' && s[2] == 'C' && s[3] == 'T' && s[4] == 'Y' && s[5] == 'P' && PUGI__ENDSWITH(s[6], 'E'))
{
s -= 2;
if (cursor->parent) PUGI__THROW_ERROR(status_bad_doctype, s);
char_t* mark = s + 9;
s = parse_doctype_group(s, endch);
if (!s) return s;
assert((*s == 0 && endch == '>') || *s == '>');
if (*s) *s++ = 0;
if (PUGI__OPTSET(parse_doctype))
{
while (PUGI__IS_CHARTYPE(*mark, ct_space)) ++mark;
PUGI__PUSHNODE(node_doctype);
cursor->value = mark;
}
}
else if (*s == 0 && endch == '-') PUGI__THROW_ERROR(status_bad_comment, s);
else if (*s == 0 && endch == '[') PUGI__THROW_ERROR(status_bad_cdata, s);
else PUGI__THROW_ERROR(status_unrecognized_tag, s);
return s;
}
char_t* parse_question(char_t* s, xml_node_struct*& ref_cursor, unsigned int optmsk, char_t endch)
{
// load into registers
xml_node_struct* cursor = ref_cursor;
char_t ch = 0;
// parse node contents, starting with question mark
++s;
// read PI target
char_t* target = s;
if (!PUGI__IS_CHARTYPE(*s, ct_start_symbol)) PUGI__THROW_ERROR(status_bad_pi, s);
PUGI__SCANWHILE(PUGI__IS_CHARTYPE(*s, ct_symbol));
PUGI__CHECK_ERROR(status_bad_pi, s);
// determine node type; stricmp / strcasecmp is not portable
bool declaration = (target[0] | ' ') == 'x' && (target[1] | ' ') == 'm' && (target[2] | ' ') == 'l' && target + 3 == s;
if (declaration ? PUGI__OPTSET(parse_declaration) : PUGI__OPTSET(parse_pi))
{
if (declaration)
{
// disallow non top-level declarations
if (cursor->parent) PUGI__THROW_ERROR(status_bad_pi, s);
PUGI__PUSHNODE(node_declaration);
}
else
{
PUGI__PUSHNODE(node_pi);
}
cursor->name = target;
PUGI__ENDSEG();
// parse value/attributes
if (ch == '?')
{
// empty node
if (!PUGI__ENDSWITH(*s, '>')) PUGI__THROW_ERROR(status_bad_pi, s);
s += (*s == '>');
PUGI__POPNODE();
}
else if (PUGI__IS_CHARTYPE(ch, ct_space))
{
PUGI__SKIPWS();
// scan for tag end
char_t* value = s;
PUGI__SCANFOR(s[0] == '?' && PUGI__ENDSWITH(s[1], '>'));
PUGI__CHECK_ERROR(status_bad_pi, s);
if (declaration)
{
// replace ending ? with / so that 'element' terminates properly
*s = '/';
// we exit from this function with cursor at node_declaration, which is a signal to parse() to go to LOC_ATTRIBUTES
s = value;
}
else
{
// store value and step over >
cursor->value = value;
PUGI__POPNODE();
PUGI__ENDSEG();
s += (*s == '>');
}
}
else PUGI__THROW_ERROR(status_bad_pi, s);
}
else
{
// scan for tag end
PUGI__SCANFOR(s[0] == '?' && PUGI__ENDSWITH(s[1], '>'));
PUGI__CHECK_ERROR(status_bad_pi, s);
s += (s[1] == '>' ? 2 : 1);
}
// store from registers
ref_cursor = cursor;
return s;
}
char_t* parse_tree(char_t* s, xml_node_struct* root, unsigned int optmsk, char_t endch)
{
strconv_attribute_t strconv_attribute = get_strconv_attribute(optmsk);
strconv_pcdata_t strconv_pcdata = get_strconv_pcdata(optmsk);
char_t ch = 0;
xml_node_struct* cursor = root;
char_t* mark = s;
while (*s != 0)
{
if (*s == '<')
{
++s;
LOC_TAG:
if (PUGI__IS_CHARTYPE(*s, ct_start_symbol)) // '<#...'
{
PUGI__PUSHNODE(node_element); // Append a new node to the tree.
cursor->name = s;
PUGI__SCANWHILE_UNROLL(PUGI__IS_CHARTYPE(ss, ct_symbol)); // Scan for a terminator.
PUGI__ENDSEG(); // Save char in 'ch', terminate & step over.
if (ch == '>')
{
// end of tag
}
else if (PUGI__IS_CHARTYPE(ch, ct_space))
{
LOC_ATTRIBUTES:
while (true)
{
PUGI__SKIPWS(); // Eat any whitespace.
if (PUGI__IS_CHARTYPE(*s, ct_start_symbol)) // <... #...
{
xml_attribute_struct* a = append_new_attribute(cursor, *alloc); // Make space for this attribute.
if (!a) PUGI__THROW_ERROR(status_out_of_memory, s);
a->name = s; // Save the offset.
PUGI__SCANWHILE_UNROLL(PUGI__IS_CHARTYPE(ss, ct_symbol)); // Scan for a terminator.
PUGI__ENDSEG(); // Save char in 'ch', terminate & step over.
if (PUGI__IS_CHARTYPE(ch, ct_space))
{
PUGI__SKIPWS(); // Eat any whitespace.
ch = *s;
++s;
}
if (ch == '=') // '<... #=...'
{
PUGI__SKIPWS(); // Eat any whitespace.
if (*s == '"' || *s == '\'') // '<... #="...'
{
ch = *s; // Save quote char to avoid breaking on "''" -or- '""'.
++s; // Step over the quote.
a->value = s; // Save the offset.
s = strconv_attribute(s, ch);
if (!s) PUGI__THROW_ERROR(status_bad_attribute, a->value);
// After this line the loop continues from the start;
// Whitespaces, / and > are ok, symbols and EOF are wrong,
// everything else will be detected
if (PUGI__IS_CHARTYPE(*s, ct_start_symbol)) PUGI__THROW_ERROR(status_bad_attribute, s);
}
else PUGI__THROW_ERROR(status_bad_attribute, s);
}
else PUGI__THROW_ERROR(status_bad_attribute, s);
}
else if (*s == '/')
{
++s;
if (*s == '>')
{
PUGI__POPNODE();
s++;
break;
}
else if (*s == 0 && endch == '>')
{
PUGI__POPNODE();
break;
}
else PUGI__THROW_ERROR(status_bad_start_element, s);
}
else if (*s == '>')
{
++s;
break;
}
else if (*s == 0 && endch == '>')
{
break;
}
else PUGI__THROW_ERROR(status_bad_start_element, s);
}
// !!!
}
else if (ch == '/') // '<#.../'
{
if (!PUGI__ENDSWITH(*s, '>')) PUGI__THROW_ERROR(status_bad_start_element, s);
PUGI__POPNODE(); // Pop.
s += (*s == '>');
}
else if (ch == 0)
{
// we stepped over null terminator, backtrack & handle closing tag
--s;
if (endch != '>') PUGI__THROW_ERROR(status_bad_start_element, s);
}
else PUGI__THROW_ERROR(status_bad_start_element, s);
}
else if (*s == '/')
{
++s;
mark = s;
char_t* name = cursor->name;
if (!name) PUGI__THROW_ERROR(status_end_element_mismatch, mark);
while (PUGI__IS_CHARTYPE(*s, ct_symbol))
{
if (*s++ != *name++) PUGI__THROW_ERROR(status_end_element_mismatch, mark);
}
if (*name)
{
if (*s == 0 && name[0] == endch && name[1] == 0) PUGI__THROW_ERROR(status_bad_end_element, s);
else PUGI__THROW_ERROR(status_end_element_mismatch, mark);
}
PUGI__POPNODE(); // Pop.
PUGI__SKIPWS();
if (*s == 0)
{
if (endch != '>') PUGI__THROW_ERROR(status_bad_end_element, s);
}
else
{
if (*s != '>') PUGI__THROW_ERROR(status_bad_end_element, s);
++s;
}
}
else if (*s == '?') // '<?...'
{
s = parse_question(s, cursor, optmsk, endch);
if (!s) return s;
assert(cursor);
if (PUGI__NODETYPE(cursor) == node_declaration) goto LOC_ATTRIBUTES;
}
else if (*s == '!') // '<!...'
{
s = parse_exclamation(s, cursor, optmsk, endch);
if (!s) return s;
}
else if (*s == 0 && endch == '?') PUGI__THROW_ERROR(status_bad_pi, s);
else PUGI__THROW_ERROR(status_unrecognized_tag, s);
}
else
{
mark = s; // Save this offset while searching for a terminator.
PUGI__SKIPWS(); // Eat whitespace if no genuine PCDATA here.
if (*s == '<' || !*s)
{
// We skipped some whitespace characters because otherwise we would take the tag branch instead of PCDATA one
assert(mark != s);
if (!PUGI__OPTSET(parse_ws_pcdata | parse_ws_pcdata_single) || PUGI__OPTSET(parse_trim_pcdata))
{
continue;
}
else if (PUGI__OPTSET(parse_ws_pcdata_single))
{
if (s[0] != '<' || s[1] != '/' || cursor->first_child) continue;
}
}
if (!PUGI__OPTSET(parse_trim_pcdata))
s = mark;
if (cursor->parent || PUGI__OPTSET(parse_fragment))
{
if (PUGI__OPTSET(parse_embed_pcdata) && cursor->parent && !cursor->first_child && !cursor->value)
{
cursor->value = s; // Save the offset.
}
else
{
PUGI__PUSHNODE(node_pcdata); // Append a new node on the tree.
cursor->value = s; // Save the offset.
PUGI__POPNODE(); // Pop since this is a standalone.
}
s = strconv_pcdata(s);
if (!*s) break;
}
else
{
PUGI__SCANFOR(*s == '<'); // '...<'
if (!*s) break;
++s;
}
// We're after '<'
goto LOC_TAG;
}
}
// check that last tag is closed
if (cursor != root) PUGI__THROW_ERROR(status_end_element_mismatch, s);
return s;
}
#ifdef PUGIXML_WCHAR_MODE
static char_t* parse_skip_bom(char_t* s)
{
unsigned int bom = 0xfeff;
return (s[0] == static_cast<wchar_t>(bom)) ? s + 1 : s;
}
#else
static char_t* parse_skip_bom(char_t* s)
{
return (s[0] == '\xef' && s[1] == '\xbb' && s[2] == '\xbf') ? s + 3 : s;
}
#endif
static bool has_element_node_siblings(xml_node_struct* node)
{
while (node)
{
if (PUGI__NODETYPE(node) == node_element) return true;
node = node->next_sibling;
}
return false;
}
static xml_parse_result parse(char_t* buffer, size_t length, xml_document_struct* xmldoc, xml_node_struct* root, unsigned int optmsk)
{
// early-out for empty documents
if (length == 0)
return make_parse_result(PUGI__OPTSET(parse_fragment) ? status_ok : status_no_document_element);
// get last child of the root before parsing
xml_node_struct* last_root_child = root->first_child ? root->first_child->prev_sibling_c + 0 : 0;
// create parser on stack
xml_parser parser(static_cast<xml_allocator*>(xmldoc));
// save last character and make buffer zero-terminated (speeds up parsing)
char_t endch = buffer[length - 1];
buffer[length - 1] = 0;
// skip BOM to make sure it does not end up as part of parse output
char_t* buffer_data = parse_skip_bom(buffer);
// perform actual parsing
parser.parse_tree(buffer_data, root, optmsk, endch);
xml_parse_result result = make_parse_result(parser.error_status, parser.error_offset ? parser.error_offset - buffer : 0);
assert(result.offset >= 0 && static_cast<size_t>(result.offset) <= length);
if (result)
{
// since we removed last character, we have to handle the only possible false positive (stray <)
if (endch == '<')
return make_parse_result(status_unrecognized_tag, length - 1);
// check if there are any element nodes parsed
xml_node_struct* first_root_child_parsed = last_root_child ? last_root_child->next_sibling + 0 : root->first_child+ 0;
if (!PUGI__OPTSET(parse_fragment) && !has_element_node_siblings(first_root_child_parsed))
return make_parse_result(status_no_document_element, length - 1);
}
else
{
// roll back offset if it occurs on a null terminator in the source buffer
if (result.offset > 0 && static_cast<size_t>(result.offset) == length - 1 && endch == 0)
result.offset--;
}
return result;
}
};
// Output facilities
PUGI__FN xml_encoding get_write_native_encoding()
{
#ifdef PUGIXML_WCHAR_MODE
return get_wchar_encoding();
#else
return encoding_utf8;
#endif
}
PUGI__FN xml_encoding get_write_encoding(xml_encoding encoding)
{
// replace wchar encoding with utf implementation
if (encoding == encoding_wchar) return get_wchar_encoding();
// replace utf16 encoding with utf16 with specific endianness
if (encoding == encoding_utf16) return is_little_endian() ? encoding_utf16_le : encoding_utf16_be;
// replace utf32 encoding with utf32 with specific endianness
if (encoding == encoding_utf32) return is_little_endian() ? encoding_utf32_le : encoding_utf32_be;
// only do autodetection if no explicit encoding is requested
if (encoding != encoding_auto) return encoding;
// assume utf8 encoding
return encoding_utf8;
}
template <typename D, typename T> PUGI__FN size_t convert_buffer_output_generic(typename T::value_type dest, const char_t* data, size_t length, D, T)
{
PUGI__STATIC_ASSERT(sizeof(char_t) == sizeof(typename D::type));
typename T::value_type end = D::process(reinterpret_cast<const typename D::type*>(data), length, dest, T());
return static_cast<size_t>(end - dest) * sizeof(*dest);
}
template <typename D, typename T> PUGI__FN size_t convert_buffer_output_generic(typename T::value_type dest, const char_t* data, size_t length, D, T, bool opt_swap)
{
PUGI__STATIC_ASSERT(sizeof(char_t) == sizeof(typename D::type));
typename T::value_type end = D::process(reinterpret_cast<const typename D::type*>(data), length, dest, T());
if (opt_swap)
{
for (typename T::value_type i = dest; i != end; ++i)
*i = endian_swap(*i);
}
return static_cast<size_t>(end - dest) * sizeof(*dest);
}
#ifdef PUGIXML_WCHAR_MODE
PUGI__FN size_t get_valid_length(const char_t* data, size_t length)
{
if (length < 1) return 0;
// discard last character if it's the lead of a surrogate pair
return (sizeof(wchar_t) == 2 && static_cast<unsigned int>(static_cast<uint16_t>(data[length - 1]) - 0xD800) < 0x400) ? length - 1 : length;
}
PUGI__FN size_t convert_buffer_output(char_t* r_char, uint8_t* r_u8, uint16_t* r_u16, uint32_t* r_u32, const char_t* data, size_t length, xml_encoding encoding)
{
// only endian-swapping is required
if (need_endian_swap_utf(encoding, get_wchar_encoding()))
{
convert_wchar_endian_swap(r_char, data, length);
return length * sizeof(char_t);
}
// convert to utf8
if (encoding == encoding_utf8)
return convert_buffer_output_generic(r_u8, data, length, wchar_decoder(), utf8_writer());
// convert to utf16
if (encoding == encoding_utf16_be || encoding == encoding_utf16_le)
{
xml_encoding native_encoding = is_little_endian() ? encoding_utf16_le : encoding_utf16_be;
return convert_buffer_output_generic(r_u16, data, length, wchar_decoder(), utf16_writer(), native_encoding != encoding);
}
// convert to utf32
if (encoding == encoding_utf32_be || encoding == encoding_utf32_le)
{
xml_encoding native_encoding = is_little_endian() ? encoding_utf32_le : encoding_utf32_be;
return convert_buffer_output_generic(r_u32, data, length, wchar_decoder(), utf32_writer(), native_encoding != encoding);
}
// convert to latin1
if (encoding == encoding_latin1)
return convert_buffer_output_generic(r_u8, data, length, wchar_decoder(), latin1_writer());
assert(false && "Invalid encoding"); // unreachable
return 0;
}
#else
PUGI__FN size_t get_valid_length(const char_t* data, size_t length)
{
if (length < 5) return 0;
for (size_t i = 1; i <= 4; ++i)
{
uint8_t ch = static_cast<uint8_t>(data[length - i]);
// either a standalone character or a leading one
if ((ch & 0xc0) != 0x80) return length - i;
}
// there are four non-leading characters at the end, sequence tail is broken so might as well process the whole chunk
return length;
}
PUGI__FN size_t convert_buffer_output(char_t* /* r_char */, uint8_t* r_u8, uint16_t* r_u16, uint32_t* r_u32, const char_t* data, size_t length, xml_encoding encoding)
{
if (encoding == encoding_utf16_be || encoding == encoding_utf16_le)
{
xml_encoding native_encoding = is_little_endian() ? encoding_utf16_le : encoding_utf16_be;
return convert_buffer_output_generic(r_u16, data, length, utf8_decoder(), utf16_writer(), native_encoding != encoding);
}
if (encoding == encoding_utf32_be || encoding == encoding_utf32_le)
{
xml_encoding native_encoding = is_little_endian() ? encoding_utf32_le : encoding_utf32_be;
return convert_buffer_output_generic(r_u32, data, length, utf8_decoder(), utf32_writer(), native_encoding != encoding);
}
if (encoding == encoding_latin1)
return convert_buffer_output_generic(r_u8, data, length, utf8_decoder(), latin1_writer());
assert(false && "Invalid encoding"); // unreachable
return 0;
}
#endif
class xml_buffered_writer
{
xml_buffered_writer(const xml_buffered_writer&);
xml_buffered_writer& operator=(const xml_buffered_writer&);
public:
xml_buffered_writer(xml_writer& writer_, xml_encoding user_encoding): writer(writer_), bufsize(0), encoding(get_write_encoding(user_encoding))
{
PUGI__STATIC_ASSERT(bufcapacity >= 8);
}
size_t flush()
{
flush(buffer, bufsize);
bufsize = 0;
return 0;
}
void flush(const char_t* data, size_t size)
{
if (size == 0) return;
// fast path, just write data
if (encoding == get_write_native_encoding())
writer.write(data, size * sizeof(char_t));
else
{
// convert chunk
size_t result = convert_buffer_output(scratch.data_char, scratch.data_u8, scratch.data_u16, scratch.data_u32, data, size, encoding);
assert(result <= sizeof(scratch));
// write data
writer.write(scratch.data_u8, result);
}
}
void write_direct(const char_t* data, size_t length)
{
// flush the remaining buffer contents
flush();
// handle large chunks
if (length > bufcapacity)
{
if (encoding == get_write_native_encoding())
{
// fast path, can just write data chunk
writer.write(data, length * sizeof(char_t));
return;
}
// need to convert in suitable chunks
while (length > bufcapacity)
{
// get chunk size by selecting such number of characters that are guaranteed to fit into scratch buffer
// and form a complete codepoint sequence (i.e. discard start of last codepoint if necessary)
size_t chunk_size = get_valid_length(data, bufcapacity);
assert(chunk_size);
// convert chunk and write
flush(data, chunk_size);
// iterate
data += chunk_size;
length -= chunk_size;
}
// small tail is copied below
bufsize = 0;
}
memcpy(buffer + bufsize, data, length * sizeof(char_t));
bufsize += length;
}
void write_buffer(const char_t* data, size_t length)
{
size_t offset = bufsize;
if (offset + length <= bufcapacity)
{
memcpy(buffer + offset, data, length * sizeof(char_t));
bufsize = offset + length;
}
else
{
write_direct(data, length);
}
}
void write_string(const char_t* data)
{
// write the part of the string that fits in the buffer
size_t offset = bufsize;
while (*data && offset < bufcapacity)
buffer[offset++] = *data++;
// write the rest
if (offset < bufcapacity)
{
bufsize = offset;
}
else
{
// backtrack a bit if we have split the codepoint
size_t length = offset - bufsize;
size_t extra = length - get_valid_length(data - length, length);
bufsize = offset - extra;
write_direct(data - extra, strlength(data) + extra);
}
}
void write(char_t d0)
{
size_t offset = bufsize;
if (offset > bufcapacity - 1) offset = flush();
buffer[offset + 0] = d0;
bufsize = offset + 1;
}
void write(char_t d0, char_t d1)
{
size_t offset = bufsize;
if (offset > bufcapacity - 2) offset = flush();
buffer[offset + 0] = d0;
buffer[offset + 1] = d1;
bufsize = offset + 2;
}
void write(char_t d0, char_t d1, char_t d2)
{
size_t offset = bufsize;
if (offset > bufcapacity - 3) offset = flush();
buffer[offset + 0] = d0;
buffer[offset + 1] = d1;
buffer[offset + 2] = d2;
bufsize = offset + 3;
}
void write(char_t d0, char_t d1, char_t d2, char_t d3)
{
size_t offset = bufsize;
if (offset > bufcapacity - 4) offset = flush();
buffer[offset + 0] = d0;
buffer[offset + 1] = d1;
buffer[offset + 2] = d2;
buffer[offset + 3] = d3;
bufsize = offset + 4;
}
void write(char_t d0, char_t d1, char_t d2, char_t d3, char_t d4)
{
size_t offset = bufsize;
if (offset > bufcapacity - 5) offset = flush();
buffer[offset + 0] = d0;
buffer[offset + 1] = d1;
buffer[offset + 2] = d2;
buffer[offset + 3] = d3;
buffer[offset + 4] = d4;
bufsize = offset + 5;
}
void write(char_t d0, char_t d1, char_t d2, char_t d3, char_t d4, char_t d5)
{
size_t offset = bufsize;
if (offset > bufcapacity - 6) offset = flush();
buffer[offset + 0] = d0;
buffer[offset + 1] = d1;
buffer[offset + 2] = d2;
buffer[offset + 3] = d3;
buffer[offset + 4] = d4;
buffer[offset + 5] = d5;
bufsize = offset + 6;
}
// utf8 maximum expansion: x4 (-> utf32)
// utf16 maximum expansion: x2 (-> utf32)
// utf32 maximum expansion: x1
enum
{
bufcapacitybytes =
#ifdef PUGIXML_MEMORY_OUTPUT_STACK
PUGIXML_MEMORY_OUTPUT_STACK
#else
10240
#endif
,
bufcapacity = bufcapacitybytes / (sizeof(char_t) + 4)
};
char_t buffer[bufcapacity];
union
{
uint8_t data_u8[4 * bufcapacity];
uint16_t data_u16[2 * bufcapacity];
uint32_t data_u32[bufcapacity];
char_t data_char[bufcapacity];
} scratch;
xml_writer& writer;
size_t bufsize;
xml_encoding encoding;
};
PUGI__FN void text_output_escaped(xml_buffered_writer& writer, const char_t* s, chartypex_t type, unsigned int flags)
{
while (*s)
{
const char_t* prev = s;
// While *s is a usual symbol
PUGI__SCANWHILE_UNROLL(!PUGI__IS_CHARTYPEX(ss, type));
writer.write_buffer(prev, static_cast<size_t>(s - prev));
switch (*s)
{
case 0: break;
case '&':
writer.write('&', 'a', 'm', 'p', ';');
++s;
break;
case '<':
writer.write('&', 'l', 't', ';');
++s;
break;
case '>':
writer.write('&', 'g', 't', ';');
++s;
break;
case '"':
if (flags & format_attribute_single_quote)
writer.write('"');
else
writer.write('&', 'q', 'u', 'o', 't', ';');
++s;
break;
case '\'':
if (flags & format_attribute_single_quote)
writer.write('&', 'a', 'p', 'o', 's', ';');
else
writer.write('\'');
++s;
break;
default: // s is not a usual symbol
{
unsigned int ch = static_cast<unsigned int>(*s++);
assert(ch < 32);
if (!(flags & format_skip_control_chars))
writer.write('&', '#', static_cast<char_t>((ch / 10) + '0'), static_cast<char_t>((ch % 10) + '0'), ';');
}
}
}
}
PUGI__FN void text_output(xml_buffered_writer& writer, const char_t* s, chartypex_t type, unsigned int flags)
{
if (flags & format_no_escapes)
writer.write_string(s);
else
text_output_escaped(writer, s, type, flags);
}
PUGI__FN void text_output_cdata(xml_buffered_writer& writer, const char_t* s)
{
do
{
writer.write('<', '!', '[', 'C', 'D');
writer.write('A', 'T', 'A', '[');
const char_t* prev = s;
// look for ]]> sequence - we can't output it as is since it terminates CDATA
while (*s && !(s[0] == ']' && s[1] == ']' && s[2] == '>')) ++s;
// skip ]] if we stopped at ]]>, > will go to the next CDATA section
if (*s) s += 2;
writer.write_buffer(prev, static_cast<size_t>(s - prev));
writer.write(']', ']', '>');
}
while (*s);
}
PUGI__FN void text_output_indent(xml_buffered_writer& writer, const char_t* indent, size_t indent_length, unsigned int depth)
{
switch (indent_length)
{
case 1:
{
for (unsigned int i = 0; i < depth; ++i)
writer.write(indent[0]);
break;
}
case 2:
{
for (unsigned int i = 0; i < depth; ++i)
writer.write(indent[0], indent[1]);
break;
}
case 3:
{
for (unsigned int i = 0; i < depth; ++i)
writer.write(indent[0], indent[1], indent[2]);
break;
}
case 4:
{
for (unsigned int i = 0; i < depth; ++i)
writer.write(indent[0], indent[1], indent[2], indent[3]);
break;
}
default:
{
for (unsigned int i = 0; i < depth; ++i)
writer.write_buffer(indent, indent_length);
}
}
}
PUGI__FN void node_output_comment(xml_buffered_writer& writer, const char_t* s)
{
writer.write('<', '!', '-', '-');
while (*s)
{
const char_t* prev = s;
// look for -\0 or -- sequence - we can't output it since -- is illegal in comment body
while (*s && !(s[0] == '-' && (s[1] == '-' || s[1] == 0))) ++s;
writer.write_buffer(prev, static_cast<size_t>(s - prev));
if (*s)
{
assert(*s == '-');
writer.write('-', ' ');
++s;
}
}
writer.write('-', '-', '>');
}
PUGI__FN void node_output_pi_value(xml_buffered_writer& writer, const char_t* s)
{
while (*s)
{
const char_t* prev = s;
// look for ?> sequence - we can't output it since ?> terminates PI
while (*s && !(s[0] == '?' && s[1] == '>')) ++s;
writer.write_buffer(prev, static_cast<size_t>(s - prev));
if (*s)
{
assert(s[0] == '?' && s[1] == '>');
writer.write('?', ' ', '>');
s += 2;
}
}
}
PUGI__FN void node_output_attributes(xml_buffered_writer& writer, xml_node_struct* node, const char_t* indent, size_t indent_length, unsigned int flags, unsigned int depth)
{
const char_t* default_name = PUGIXML_TEXT(":anonymous");
const char_t enquotation_char = (flags & format_attribute_single_quote) ? '\'' : '"';
for (xml_attribute_struct* a = node->first_attribute; a; a = a->next_attribute)
{
if ((flags & (format_indent_attributes | format_raw)) == format_indent_attributes)
{
writer.write('\n');
text_output_indent(writer, indent, indent_length, depth + 1);
}
else
{
writer.write(' ');
}
writer.write_string(a->name ? a->name + 0 : default_name);
writer.write('=', enquotation_char);
if (a->value)
text_output(writer, a->value, ctx_special_attr, flags);
writer.write(enquotation_char);
}
}
PUGI__FN bool node_output_start(xml_buffered_writer& writer, xml_node_struct* node, const char_t* indent, size_t indent_length, unsigned int flags, unsigned int depth)
{
const char_t* default_name = PUGIXML_TEXT(":anonymous");
const char_t* name = node->name ? node->name + 0 : default_name;
writer.write('<');
writer.write_string(name);
if (node->first_attribute)
node_output_attributes(writer, node, indent, indent_length, flags, depth);
// element nodes can have value if parse_embed_pcdata was used
if (!node->value)
{
if (!node->first_child)
{
if (flags & format_no_empty_element_tags)
{
writer.write('>', '<', '/');
writer.write_string(name);
writer.write('>');
return false;
}
else
{
if ((flags & format_raw) == 0)
writer.write(' ');
writer.write('/', '>');
return false;
}
}
else
{
writer.write('>');
return true;
}
}
else
{
writer.write('>');
text_output(writer, node->value, ctx_special_pcdata, flags);
if (!node->first_child)
{
writer.write('<', '/');
writer.write_string(name);
writer.write('>');
return false;
}
else
{
return true;
}
}
}
PUGI__FN void node_output_end(xml_buffered_writer& writer, xml_node_struct* node)
{
const char_t* default_name = PUGIXML_TEXT(":anonymous");
const char_t* name = node->name ? node->name + 0 : default_name;
writer.write('<', '/');
writer.write_string(name);
writer.write('>');
}
PUGI__FN void node_output_simple(xml_buffered_writer& writer, xml_node_struct* node, unsigned int flags)
{
const char_t* default_name = PUGIXML_TEXT(":anonymous");
switch (PUGI__NODETYPE(node))
{
case node_pcdata:
text_output(writer, node->value ? node->value + 0 : PUGIXML_TEXT(""), ctx_special_pcdata, flags);
break;
case node_cdata:
text_output_cdata(writer, node->value ? node->value + 0 : PUGIXML_TEXT(""));
break;
case node_comment:
node_output_comment(writer, node->value ? node->value + 0 : PUGIXML_TEXT(""));
break;
case node_pi:
writer.write('<', '?');
writer.write_string(node->name ? node->name + 0 : default_name);
if (node->value)
{
writer.write(' ');
node_output_pi_value(writer, node->value);
}
writer.write('?', '>');
break;
case node_declaration:
writer.write('<', '?');
writer.write_string(node->name ? node->name + 0 : default_name);
node_output_attributes(writer, node, PUGIXML_TEXT(""), 0, flags | format_raw, 0);
writer.write('?', '>');
break;
case node_doctype:
writer.write('<', '!', 'D', 'O', 'C');
writer.write('T', 'Y', 'P', 'E');
if (node->value)
{
writer.write(' ');
writer.write_string(node->value);
}
writer.write('>');
break;
default:
assert(false && "Invalid node type"); // unreachable
}
}
enum indent_flags_t
{
indent_newline = 1,
indent_indent = 2
};
PUGI__FN void node_output(xml_buffered_writer& writer, xml_node_struct* root, const char_t* indent, unsigned int flags, unsigned int depth)
{
size_t indent_length = ((flags & (format_indent | format_indent_attributes)) && (flags & format_raw) == 0) ? strlength(indent) : 0;
unsigned int indent_flags = indent_indent;
xml_node_struct* node = root;
do
{
assert(node);
// begin writing current node
if (PUGI__NODETYPE(node) == node_pcdata || PUGI__NODETYPE(node) == node_cdata)
{
node_output_simple(writer, node, flags);
indent_flags = 0;
}
else
{
if ((indent_flags & indent_newline) && (flags & format_raw) == 0)
writer.write('\n');
if ((indent_flags & indent_indent) && indent_length)
text_output_indent(writer, indent, indent_length, depth);
if (PUGI__NODETYPE(node) == node_element)
{
indent_flags = indent_newline | indent_indent;
if (node_output_start(writer, node, indent, indent_length, flags, depth))
{
// element nodes can have value if parse_embed_pcdata was used
if (node->value)
indent_flags = 0;
node = node->first_child;
depth++;
continue;
}
}
else if (PUGI__NODETYPE(node) == node_document)
{
indent_flags = indent_indent;
if (node->first_child)
{
node = node->first_child;
continue;
}
}
else
{
node_output_simple(writer, node, flags);
indent_flags = indent_newline | indent_indent;
}
}
// continue to the next node
while (node != root)
{
if (node->next_sibling)
{
node = node->next_sibling;
break;
}
node = node->parent;
// write closing node
if (PUGI__NODETYPE(node) == node_element)
{
depth--;
if ((indent_flags & indent_newline) && (flags & format_raw) == 0)
writer.write('\n');
if ((indent_flags & indent_indent) && indent_length)
text_output_indent(writer, indent, indent_length, depth);
node_output_end(writer, node);
indent_flags = indent_newline | indent_indent;
}
}
}
while (node != root);
if ((indent_flags & indent_newline) && (flags & format_raw) == 0)
writer.write('\n');
}
PUGI__FN bool has_declaration(xml_node_struct* node)
{
for (xml_node_struct* child = node->first_child; child; child = child->next_sibling)
{
xml_node_type type = PUGI__NODETYPE(child);
if (type == node_declaration) return true;
if (type == node_element) return false;
}
return false;
}
PUGI__FN bool is_attribute_of(xml_attribute_struct* attr, xml_node_struct* node)
{
for (xml_attribute_struct* a = node->first_attribute; a; a = a->next_attribute)
if (a == attr)
return true;
return false;
}
PUGI__FN bool allow_insert_attribute(xml_node_type parent)
{
return parent == node_element || parent == node_declaration;
}
PUGI__FN bool allow_insert_child(xml_node_type parent, xml_node_type child)
{
if (parent != node_document && parent != node_element) return false;
if (child == node_document || child == node_null) return false;
if (parent != node_document && (child == node_declaration || child == node_doctype)) return false;
return true;
}
PUGI__FN bool allow_move(xml_node parent, xml_node child)
{
// check that child can be a child of parent
if (!allow_insert_child(parent.type(), child.type()))
return false;
// check that node is not moved between documents
if (parent.root() != child.root())
return false;
// check that new parent is not in the child subtree
xml_node cur = parent;
while (cur)
{
if (cur == child)
return false;
cur = cur.parent();
}
return true;
}
template <typename String, typename Header>
PUGI__FN void node_copy_string(String& dest, Header& header, uintptr_t header_mask, char_t* source, Header& source_header, xml_allocator* alloc)
{
assert(!dest && (header & header_mask) == 0);
if (source)
{
if (alloc && (source_header & header_mask) == 0)
{
dest = source;
// since strcpy_insitu can reuse document buffer memory we need to mark both source and dest as shared
header |= xml_memory_page_contents_shared_mask;
source_header |= xml_memory_page_contents_shared_mask;
}
else
strcpy_insitu(dest, header, header_mask, source, strlength(source));
}
}
PUGI__FN void node_copy_contents(xml_node_struct* dn, xml_node_struct* sn, xml_allocator* shared_alloc)
{
node_copy_string(dn->name, dn->header, xml_memory_page_name_allocated_mask, sn->name, sn->header, shared_alloc);
node_copy_string(dn->value, dn->header, xml_memory_page_value_allocated_mask, sn->value, sn->header, shared_alloc);
for (xml_attribute_struct* sa = sn->first_attribute; sa; sa = sa->next_attribute)
{
xml_attribute_struct* da = append_new_attribute(dn, get_allocator(dn));
if (da)
{
node_copy_string(da->name, da->header, xml_memory_page_name_allocated_mask, sa->name, sa->header, shared_alloc);
node_copy_string(da->value, da->header, xml_memory_page_value_allocated_mask, sa->value, sa->header, shared_alloc);
}
}
}
PUGI__FN void node_copy_tree(xml_node_struct* dn, xml_node_struct* sn)
{
xml_allocator& alloc = get_allocator(dn);
xml_allocator* shared_alloc = (&alloc == &get_allocator(sn)) ? &alloc : 0;
node_copy_contents(dn, sn, shared_alloc);
xml_node_struct* dit = dn;
xml_node_struct* sit = sn->first_child;
while (sit && sit != sn)
{
// loop invariant: dit is inside the subtree rooted at dn
assert(dit);
// when a tree is copied into one of the descendants, we need to skip that subtree to avoid an infinite loop
if (sit != dn)
{
xml_node_struct* copy = append_new_node(dit, alloc, PUGI__NODETYPE(sit));
if (copy)
{
node_copy_contents(copy, sit, shared_alloc);
if (sit->first_child)
{
dit = copy;
sit = sit->first_child;
continue;
}
}
}
// continue to the next node
do
{
if (sit->next_sibling)
{
sit = sit->next_sibling;
break;
}
sit = sit->parent;
dit = dit->parent;
// loop invariant: dit is inside the subtree rooted at dn while sit is inside sn
assert(sit == sn || dit);
}
while (sit != sn);
}
assert(!sit || dit == dn->parent);
}
PUGI__FN void node_copy_attribute(xml_attribute_struct* da, xml_attribute_struct* sa)
{
xml_allocator& alloc = get_allocator(da);
xml_allocator* shared_alloc = (&alloc == &get_allocator(sa)) ? &alloc : 0;
node_copy_string(da->name, da->header, xml_memory_page_name_allocated_mask, sa->name, sa->header, shared_alloc);
node_copy_string(da->value, da->header, xml_memory_page_value_allocated_mask, sa->value, sa->header, shared_alloc);
}
inline bool is_text_node(xml_node_struct* node)
{
xml_node_type type = PUGI__NODETYPE(node);
return type == node_pcdata || type == node_cdata;
}
// get value with conversion functions
template <typename U> PUGI__FN PUGI__UNSIGNED_OVERFLOW U string_to_integer(const char_t* value, U minv, U maxv)
{
U result = 0;
const char_t* s = value;
while (PUGI__IS_CHARTYPE(*s, ct_space))
s++;
bool negative = (*s == '-');
s += (*s == '+' || *s == '-');
bool overflow = false;
if (s[0] == '0' && (s[1] | ' ') == 'x')
{
s += 2;
// since overflow detection relies on length of the sequence skip leading zeros
while (*s == '0')
s++;
const char_t* start = s;
for (;;)
{
if (static_cast<unsigned>(*s - '0') < 10)
result = result * 16 + (*s - '0');
else if (static_cast<unsigned>((*s | ' ') - 'a') < 6)
result = result * 16 + ((*s | ' ') - 'a' + 10);
else
break;
s++;
}
size_t digits = static_cast<size_t>(s - start);
overflow = digits > sizeof(U) * 2;
}
else
{
// since overflow detection relies on length of the sequence skip leading zeros
while (*s == '0')
s++;
const char_t* start = s;
for (;;)
{
if (static_cast<unsigned>(*s - '0') < 10)
result = result * 10 + (*s - '0');
else
break;
s++;
}
size_t digits = static_cast<size_t>(s - start);
PUGI__STATIC_ASSERT(sizeof(U) == 8 || sizeof(U) == 4 || sizeof(U) == 2);
const size_t max_digits10 = sizeof(U) == 8 ? 20 : sizeof(U) == 4 ? 10 : 5;
const char_t max_lead = sizeof(U) == 8 ? '1' : sizeof(U) == 4 ? '4' : '6';
const size_t high_bit = sizeof(U) * 8 - 1;
overflow = digits >= max_digits10 && !(digits == max_digits10 && (*start < max_lead || (*start == max_lead && result >> high_bit)));
}
if (negative)
{
// Workaround for crayc++ CC-3059: Expected no overflow in routine.
#ifdef _CRAYC
return (overflow || result > ~minv + 1) ? minv : ~result + 1;
#else
return (overflow || result > 0 - minv) ? minv : 0 - result;
#endif
}
else
return (overflow || result > maxv) ? maxv : result;
}
PUGI__FN int get_value_int(const char_t* value)
{
return string_to_integer<unsigned int>(value, static_cast<unsigned int>(INT_MIN), INT_MAX);
}
PUGI__FN unsigned int get_value_uint(const char_t* value)
{
return string_to_integer<unsigned int>(value, 0, UINT_MAX);
}
PUGI__FN double get_value_double(const char_t* value)
{
#ifdef PUGIXML_WCHAR_MODE
return wcstod(value, 0);
#else
return strtod(value, 0);
#endif
}
PUGI__FN float get_value_float(const char_t* value)
{
#ifdef PUGIXML_WCHAR_MODE
return static_cast<float>(wcstod(value, 0));
#else
return static_cast<float>(strtod(value, 0));
#endif
}
PUGI__FN bool get_value_bool(const char_t* value)
{
// only look at first char
char_t first = *value;
// 1*, t* (true), T* (True), y* (yes), Y* (YES)
return (first == '1' || first == 't' || first == 'T' || first == 'y' || first == 'Y');
}
#ifdef PUGIXML_HAS_LONG_LONG
PUGI__FN long long get_value_llong(const char_t* value)
{
return string_to_integer<unsigned long long>(value, static_cast<unsigned long long>(LLONG_MIN), LLONG_MAX);
}
PUGI__FN unsigned long long get_value_ullong(const char_t* value)
{
return string_to_integer<unsigned long long>(value, 0, ULLONG_MAX);
}
#endif
template <typename U> PUGI__FN PUGI__UNSIGNED_OVERFLOW char_t* integer_to_string(char_t* begin, char_t* end, U value, bool negative)
{
char_t* result = end - 1;
U rest = negative ? 0 - value : value;
do
{
*result-- = static_cast<char_t>('0' + (rest % 10));
rest /= 10;
}
while (rest);
assert(result >= begin);
(void)begin;
*result = '-';
return result + !negative;
}
// set value with conversion functions
template <typename String, typename Header>
PUGI__FN bool set_value_ascii(String& dest, Header& header, uintptr_t header_mask, char* buf)
{
#ifdef PUGIXML_WCHAR_MODE
char_t wbuf[128];
assert(strlen(buf) < sizeof(wbuf) / sizeof(wbuf[0]));
size_t offset = 0;
for (; buf[offset]; ++offset) wbuf[offset] = buf[offset];
return strcpy_insitu(dest, header, header_mask, wbuf, offset);
#else
return strcpy_insitu(dest, header, header_mask, buf, strlen(buf));
#endif
}
template <typename U, typename String, typename Header>
PUGI__FN bool set_value_integer(String& dest, Header& header, uintptr_t header_mask, U value, bool negative)
{
char_t buf[64];
char_t* end = buf + sizeof(buf) / sizeof(buf[0]);
char_t* begin = integer_to_string(buf, end, value, negative);
return strcpy_insitu(dest, header, header_mask, begin, end - begin);
}
template <typename String, typename Header>
PUGI__FN bool set_value_convert(String& dest, Header& header, uintptr_t header_mask, float value, int precision)
{
char buf[128];
PUGI__SNPRINTF(buf, "%.*g", precision, double(value));
return set_value_ascii(dest, header, header_mask, buf);
}
template <typename String, typename Header>
PUGI__FN bool set_value_convert(String& dest, Header& header, uintptr_t header_mask, double value, int precision)
{
char buf[128];
PUGI__SNPRINTF(buf, "%.*g", precision, value);
return set_value_ascii(dest, header, header_mask, buf);
}
template <typename String, typename Header>
PUGI__FN bool set_value_bool(String& dest, Header& header, uintptr_t header_mask, bool value)
{
return strcpy_insitu(dest, header, header_mask, value ? PUGIXML_TEXT("true") : PUGIXML_TEXT("false"), value ? 4 : 5);
}
PUGI__FN xml_parse_result load_buffer_impl(xml_document_struct* doc, xml_node_struct* root, void* contents, size_t size, unsigned int options, xml_encoding encoding, bool is_mutable, bool own, char_t** out_buffer)
{
// check input buffer
if (!contents && size) return make_parse_result(status_io_error);
// get actual encoding
xml_encoding buffer_encoding = impl::get_buffer_encoding(encoding, contents, size);
// get private buffer
char_t* buffer = 0;
size_t length = 0;
// coverity[var_deref_model]
if (!impl::convert_buffer(buffer, length, buffer_encoding, contents, size, is_mutable)) return impl::make_parse_result(status_out_of_memory);
// delete original buffer if we performed a conversion
if (own && buffer != contents && contents) impl::xml_memory::deallocate(contents);
// grab onto buffer if it's our buffer, user is responsible for deallocating contents himself
if (own || buffer != contents) *out_buffer = buffer;
// store buffer for offset_debug
doc->buffer = buffer;
// parse
xml_parse_result res = impl::xml_parser::parse(buffer, length, doc, root, options);
// remember encoding
res.encoding = buffer_encoding;
return res;
}
// we need to get length of entire file to load it in memory; the only (relatively) sane way to do it is via seek/tell trick
PUGI__FN xml_parse_status get_file_size(FILE* file, size_t& out_result)
{
#if defined(PUGI__MSVC_CRT_VERSION) && PUGI__MSVC_CRT_VERSION >= 1400 && !defined(_WIN32_WCE)
// there are 64-bit versions of fseek/ftell, let's use them
typedef __int64 length_type;
_fseeki64(file, 0, SEEK_END);
length_type length = _ftelli64(file);
_fseeki64(file, 0, SEEK_SET);
#elif defined(__MINGW32__) && !defined(__NO_MINGW_LFS) && (!defined(__STRICT_ANSI__) || defined(__MINGW64_VERSION_MAJOR))
// there are 64-bit versions of fseek/ftell, let's use them
typedef off64_t length_type;
fseeko64(file, 0, SEEK_END);
length_type length = ftello64(file);
fseeko64(file, 0, SEEK_SET);
#else
// if this is a 32-bit OS, long is enough; if this is a unix system, long is 64-bit, which is enough; otherwise we can't do anything anyway.
typedef long length_type;
fseek(file, 0, SEEK_END);
length_type length = ftell(file);
fseek(file, 0, SEEK_SET);
#endif
// check for I/O errors
if (length < 0) return status_io_error;
// check for overflow
size_t result = static_cast<size_t>(length);
if (static_cast<length_type>(result) != length) return status_out_of_memory;
// finalize
out_result = result;
return status_ok;
}
// This function assumes that buffer has extra sizeof(char_t) writable bytes after size
PUGI__FN size_t zero_terminate_buffer(void* buffer, size_t size, xml_encoding encoding)
{
// We only need to zero-terminate if encoding conversion does not do it for us
#ifdef PUGIXML_WCHAR_MODE
xml_encoding wchar_encoding = get_wchar_encoding();
if (encoding == wchar_encoding || need_endian_swap_utf(encoding, wchar_encoding))
{
size_t length = size / sizeof(char_t);
static_cast<char_t*>(buffer)[length] = 0;
return (length + 1) * sizeof(char_t);
}
#else
if (encoding == encoding_utf8)
{
static_cast<char*>(buffer)[size] = 0;
return size + 1;
}
#endif
return size;
}
PUGI__FN xml_parse_result load_file_impl(xml_document_struct* doc, FILE* file, unsigned int options, xml_encoding encoding, char_t** out_buffer)
{
if (!file) return make_parse_result(status_file_not_found);
// get file size (can result in I/O errors)
size_t size = 0;
xml_parse_status size_status = get_file_size(file, size);
if (size_status != status_ok) return make_parse_result(size_status);
size_t max_suffix_size = sizeof(char_t);
// allocate buffer for the whole file
char* contents = static_cast<char*>(xml_memory::allocate(size + max_suffix_size));
if (!contents) return make_parse_result(status_out_of_memory);
// read file in memory
size_t read_size = fread(contents, 1, size, file);
if (read_size != size)
{
xml_memory::deallocate(contents);
return make_parse_result(status_io_error);
}
xml_encoding real_encoding = get_buffer_encoding(encoding, contents, size);
return load_buffer_impl(doc, doc, contents, zero_terminate_buffer(contents, size, real_encoding), options, real_encoding, true, true, out_buffer);
}
PUGI__FN void close_file(FILE* file)
{
fclose(file);
}
#ifndef PUGIXML_NO_STL
template <typename T> struct xml_stream_chunk
{
static xml_stream_chunk* create()
{
void* memory = xml_memory::allocate(sizeof(xml_stream_chunk));
if (!memory) return 0;
return new (memory) xml_stream_chunk();
}
static void destroy(xml_stream_chunk* chunk)
{
// free chunk chain
while (chunk)
{
xml_stream_chunk* next_ = chunk->next;
xml_memory::deallocate(chunk);
chunk = next_;
}
}
xml_stream_chunk(): next(0), size(0)
{
}
xml_stream_chunk* next;
size_t size;
T data[xml_memory_page_size / sizeof(T)];
};
template <typename T> PUGI__FN xml_parse_status load_stream_data_noseek(std::basic_istream<T>& stream, void** out_buffer, size_t* out_size)
{
auto_deleter<xml_stream_chunk<T> > chunks(0, xml_stream_chunk<T>::destroy);
// read file to a chunk list
size_t total = 0;
xml_stream_chunk<T>* last = 0;
while (!stream.eof())
{
// allocate new chunk
xml_stream_chunk<T>* chunk = xml_stream_chunk<T>::create();
if (!chunk) return status_out_of_memory;
// append chunk to list
if (last) last = last->next = chunk;
else chunks.data = last = chunk;
// read data to chunk
stream.read(chunk->data, static_cast<std::streamsize>(sizeof(chunk->data) / sizeof(T)));
chunk->size = static_cast<size_t>(stream.gcount()) * sizeof(T);
// read may set failbit | eofbit in case gcount() is less than read length, so check for other I/O errors
if (stream.bad() || (!stream.eof() && stream.fail())) return status_io_error;
// guard against huge files (chunk size is small enough to make this overflow check work)
if (total + chunk->size < total) return status_out_of_memory;
total += chunk->size;
}
size_t max_suffix_size = sizeof(char_t);
// copy chunk list to a contiguous buffer
char* buffer = static_cast<char*>(xml_memory::allocate(total + max_suffix_size));
if (!buffer) return status_out_of_memory;
char* write = buffer;
for (xml_stream_chunk<T>* chunk = chunks.data; chunk; chunk = chunk->next)
{
assert(write + chunk->size <= buffer + total);
memcpy(write, chunk->data, chunk->size);
write += chunk->size;
}
assert(write == buffer + total);
// return buffer
*out_buffer = buffer;
*out_size = total;
return status_ok;
}
template <typename T> PUGI__FN xml_parse_status load_stream_data_seek(std::basic_istream<T>& stream, void** out_buffer, size_t* out_size)
{
// get length of remaining data in stream
typename std::basic_istream<T>::pos_type pos = stream.tellg();
stream.seekg(0, std::ios::end);
std::streamoff length = stream.tellg() - pos;
stream.seekg(pos);
if (stream.fail() || pos < 0) return status_io_error;
// guard against huge files
size_t read_length = static_cast<size_t>(length);
if (static_cast<std::streamsize>(read_length) != length || length < 0) return status_out_of_memory;
size_t max_suffix_size = sizeof(char_t);
// read stream data into memory (guard against stream exceptions with buffer holder)
auto_deleter<void> buffer(xml_memory::allocate(read_length * sizeof(T) + max_suffix_size), xml_memory::deallocate);
if (!buffer.data) return status_out_of_memory;
stream.read(static_cast<T*>(buffer.data), static_cast<std::streamsize>(read_length));
// read may set failbit | eofbit in case gcount() is less than read_length (i.e. line ending conversion), so check for other I/O errors
if (stream.bad() || (!stream.eof() && stream.fail())) return status_io_error;
// return buffer
size_t actual_length = static_cast<size_t>(stream.gcount());
assert(actual_length <= read_length);
*out_buffer = buffer.release();
*out_size = actual_length * sizeof(T);
return status_ok;
}
template <typename T> PUGI__FN xml_parse_result load_stream_impl(xml_document_struct* doc, std::basic_istream<T>& stream, unsigned int options, xml_encoding encoding, char_t** out_buffer)
{
void* buffer = 0;
size_t size = 0;
xml_parse_status status = status_ok;
// if stream has an error bit set, bail out (otherwise tellg() can fail and we'll clear error bits)
if (stream.fail()) return make_parse_result(status_io_error);
// load stream to memory (using seek-based implementation if possible, since it's faster and takes less memory)
if (stream.tellg() < 0)
{
stream.clear(); // clear error flags that could be set by a failing tellg
status = load_stream_data_noseek(stream, &buffer, &size);
}
else
status = load_stream_data_seek(stream, &buffer, &size);
if (status != status_ok) return make_parse_result(status);
xml_encoding real_encoding = get_buffer_encoding(encoding, buffer, size);
return load_buffer_impl(doc, doc, buffer, zero_terminate_buffer(buffer, size, real_encoding), options, real_encoding, true, true, out_buffer);
}
#endif
#if defined(PUGI__MSVC_CRT_VERSION) || defined(__BORLANDC__) || (defined(__MINGW32__) && (!defined(__STRICT_ANSI__) || defined(__MINGW64_VERSION_MAJOR)))
PUGI__FN FILE* open_file_wide(const wchar_t* path, const wchar_t* mode)
{
return _wfopen(path, mode);
}
#else
PUGI__FN char* convert_path_heap(const wchar_t* str)
{
assert(str);
// first pass: get length in utf8 characters
size_t length = strlength_wide(str);
size_t size = as_utf8_begin(str, length);
// allocate resulting string
char* result = static_cast<char*>(xml_memory::allocate(size + 1));
if (!result) return 0;
// second pass: convert to utf8
as_utf8_end(result, size, str, length);
// zero-terminate
result[size] = 0;
return result;
}
PUGI__FN FILE* open_file_wide(const wchar_t* path, const wchar_t* mode)
{
// there is no standard function to open wide paths, so our best bet is to try utf8 path
char* path_utf8 = convert_path_heap(path);
if (!path_utf8) return 0;
// convert mode to ASCII (we mirror _wfopen interface)
char mode_ascii[4] = {0};
for (size_t i = 0; mode[i]; ++i) mode_ascii[i] = static_cast<char>(mode[i]);
// try to open the utf8 path
FILE* result = fopen(path_utf8, mode_ascii);
// free dummy buffer
xml_memory::deallocate(path_utf8);
return result;
}
#endif
PUGI__FN bool save_file_impl(const xml_document& doc, FILE* file, const char_t* indent, unsigned int flags, xml_encoding encoding)
{
if (!file) return false;
xml_writer_file writer(file);
doc.save(writer, indent, flags, encoding);
return ferror(file) == 0;
}
struct name_null_sentry
{
xml_node_struct* node;
char_t* name;
name_null_sentry(xml_node_struct* node_): node(node_), name(node_->name)
{
node->name = 0;
}
~name_null_sentry()
{
node->name = name;
}
};
PUGI__NS_END
namespace pugi
{
PUGI__FN xml_writer_file::xml_writer_file(void* file_): file(file_)
{
}
PUGI__FN void xml_writer_file::write(const void* data, size_t size)
{
size_t result = fwrite(data, 1, size, static_cast<FILE*>(file));
(void)!result; // unfortunately we can't do proper error handling here
}
#ifndef PUGIXML_NO_STL
PUGI__FN xml_writer_stream::xml_writer_stream(std::basic_ostream<char, std::char_traits<char> >& stream): narrow_stream(&stream), wide_stream(0)
{
}
PUGI__FN xml_writer_stream::xml_writer_stream(std::basic_ostream<wchar_t, std::char_traits<wchar_t> >& stream): narrow_stream(0), wide_stream(&stream)
{
}
PUGI__FN void xml_writer_stream::write(const void* data, size_t size)
{
if (narrow_stream)
{
assert(!wide_stream);
narrow_stream->write(reinterpret_cast<const char*>(data), static_cast<std::streamsize>(size));
}
else
{
assert(wide_stream);
assert(size % sizeof(wchar_t) == 0);
wide_stream->write(reinterpret_cast<const wchar_t*>(data), static_cast<std::streamsize>(size / sizeof(wchar_t)));
}
}
#endif
PUGI__FN xml_tree_walker::xml_tree_walker(): _depth(0)
{
}
PUGI__FN xml_tree_walker::~xml_tree_walker()
{
}
PUGI__FN int xml_tree_walker::depth() const
{
return _depth;
}
PUGI__FN bool xml_tree_walker::begin(xml_node&)
{
return true;
}
PUGI__FN bool xml_tree_walker::end(xml_node&)
{
return true;
}
PUGI__FN xml_attribute::xml_attribute(): _attr(0)
{
}
PUGI__FN xml_attribute::xml_attribute(xml_attribute_struct* attr): _attr(attr)
{
}
PUGI__FN static void unspecified_bool_xml_attribute(xml_attribute***)
{
}
PUGI__FN xml_attribute::operator xml_attribute::unspecified_bool_type() const
{
return _attr ? unspecified_bool_xml_attribute : 0;
}
PUGI__FN bool xml_attribute::operator!() const
{
return !_attr;
}
PUGI__FN bool xml_attribute::operator==(const xml_attribute& r) const
{
return (_attr == r._attr);
}
PUGI__FN bool xml_attribute::operator!=(const xml_attribute& r) const
{
return (_attr != r._attr);
}
PUGI__FN bool xml_attribute::operator<(const xml_attribute& r) const
{
return (_attr < r._attr);
}
PUGI__FN bool xml_attribute::operator>(const xml_attribute& r) const
{
return (_attr > r._attr);
}
PUGI__FN bool xml_attribute::operator<=(const xml_attribute& r) const
{
return (_attr <= r._attr);
}
PUGI__FN bool xml_attribute::operator>=(const xml_attribute& r) const
{
return (_attr >= r._attr);
}
PUGI__FN xml_attribute xml_attribute::next_attribute() const
{
return _attr ? xml_attribute(_attr->next_attribute) : xml_attribute();
}
PUGI__FN xml_attribute xml_attribute::previous_attribute() const
{
return _attr && _attr->prev_attribute_c->next_attribute ? xml_attribute(_attr->prev_attribute_c) : xml_attribute();
}
PUGI__FN const char_t* xml_attribute::as_string(const char_t* def) const
{
return (_attr && _attr->value) ? _attr->value + 0 : def;
}
PUGI__FN int xml_attribute::as_int(int def) const
{
return (_attr && _attr->value) ? impl::get_value_int(_attr->value) : def;
}
PUGI__FN unsigned int xml_attribute::as_uint(unsigned int def) const
{
return (_attr && _attr->value) ? impl::get_value_uint(_attr->value) : def;
}
PUGI__FN double xml_attribute::as_double(double def) const
{
return (_attr && _attr->value) ? impl::get_value_double(_attr->value) : def;
}
PUGI__FN float xml_attribute::as_float(float def) const
{
return (_attr && _attr->value) ? impl::get_value_float(_attr->value) : def;
}
PUGI__FN bool xml_attribute::as_bool(bool def) const
{
return (_attr && _attr->value) ? impl::get_value_bool(_attr->value) : def;
}
#ifdef PUGIXML_HAS_LONG_LONG
PUGI__FN long long xml_attribute::as_llong(long long def) const
{
return (_attr && _attr->value) ? impl::get_value_llong(_attr->value) : def;
}
PUGI__FN unsigned long long xml_attribute::as_ullong(unsigned long long def) const
{
return (_attr && _attr->value) ? impl::get_value_ullong(_attr->value) : def;
}
#endif
PUGI__FN bool xml_attribute::empty() const
{
return !_attr;
}
PUGI__FN const char_t* xml_attribute::name() const
{
return (_attr && _attr->name) ? _attr->name + 0 : PUGIXML_TEXT("");
}
PUGI__FN const char_t* xml_attribute::value() const
{
return (_attr && _attr->value) ? _attr->value + 0 : PUGIXML_TEXT("");
}
PUGI__FN size_t xml_attribute::hash_value() const
{
return static_cast<size_t>(reinterpret_cast<uintptr_t>(_attr) / sizeof(xml_attribute_struct));
}
PUGI__FN xml_attribute_struct* xml_attribute::internal_object() const
{
return _attr;
}
PUGI__FN xml_attribute& xml_attribute::operator=(const char_t* rhs)
{
set_value(rhs);
return *this;
}
PUGI__FN xml_attribute& xml_attribute::operator=(int rhs)
{
set_value(rhs);
return *this;
}
PUGI__FN xml_attribute& xml_attribute::operator=(unsigned int rhs)
{
set_value(rhs);
return *this;
}
PUGI__FN xml_attribute& xml_attribute::operator=(long rhs)
{
set_value(rhs);
return *this;
}
PUGI__FN xml_attribute& xml_attribute::operator=(unsigned long rhs)
{
set_value(rhs);
return *this;
}
PUGI__FN xml_attribute& xml_attribute::operator=(double rhs)
{
set_value(rhs);
return *this;
}
PUGI__FN xml_attribute& xml_attribute::operator=(float rhs)
{
set_value(rhs);
return *this;
}
PUGI__FN xml_attribute& xml_attribute::operator=(bool rhs)
{
set_value(rhs);
return *this;
}
#ifdef PUGIXML_HAS_LONG_LONG
PUGI__FN xml_attribute& xml_attribute::operator=(long long rhs)
{
set_value(rhs);
return *this;
}
PUGI__FN xml_attribute& xml_attribute::operator=(unsigned long long rhs)
{
set_value(rhs);
return *this;
}
#endif
PUGI__FN bool xml_attribute::set_name(const char_t* rhs)
{
if (!_attr) return false;
return impl::strcpy_insitu(_attr->name, _attr->header, impl::xml_memory_page_name_allocated_mask, rhs, impl::strlength(rhs));
}
PUGI__FN bool xml_attribute::set_value(const char_t* rhs)
{
if (!_attr) return false;
return impl::strcpy_insitu(_attr->value, _attr->header, impl::xml_memory_page_value_allocated_mask, rhs, impl::strlength(rhs));
}
PUGI__FN bool xml_attribute::set_value(int rhs)
{
if (!_attr) return false;
return impl::set_value_integer<unsigned int>(_attr->value, _attr->header, impl::xml_memory_page_value_allocated_mask, rhs, rhs < 0);
}
PUGI__FN bool xml_attribute::set_value(unsigned int rhs)
{
if (!_attr) return false;
return impl::set_value_integer<unsigned int>(_attr->value, _attr->header, impl::xml_memory_page_value_allocated_mask, rhs, false);
}
PUGI__FN bool xml_attribute::set_value(long rhs)
{
if (!_attr) return false;
return impl::set_value_integer<unsigned long>(_attr->value, _attr->header, impl::xml_memory_page_value_allocated_mask, rhs, rhs < 0);
}
PUGI__FN bool xml_attribute::set_value(unsigned long rhs)
{
if (!_attr) return false;
return impl::set_value_integer<unsigned long>(_attr->value, _attr->header, impl::xml_memory_page_value_allocated_mask, rhs, false);
}
PUGI__FN bool xml_attribute::set_value(double rhs)
{
if (!_attr) return false;
return impl::set_value_convert(_attr->value, _attr->header, impl::xml_memory_page_value_allocated_mask, rhs, default_double_precision);
}
PUGI__FN bool xml_attribute::set_value(double rhs, int precision)
{
if (!_attr) return false;
return impl::set_value_convert(_attr->value, _attr->header, impl::xml_memory_page_value_allocated_mask, rhs, precision);
}
PUGI__FN bool xml_attribute::set_value(float rhs)
{
if (!_attr) return false;
return impl::set_value_convert(_attr->value, _attr->header, impl::xml_memory_page_value_allocated_mask, rhs, default_float_precision);
}
PUGI__FN bool xml_attribute::set_value(float rhs, int precision)
{
if (!_attr) return false;
return impl::set_value_convert(_attr->value, _attr->header, impl::xml_memory_page_value_allocated_mask, rhs, precision);
}
PUGI__FN bool xml_attribute::set_value(bool rhs)
{
if (!_attr) return false;
return impl::set_value_bool(_attr->value, _attr->header, impl::xml_memory_page_value_allocated_mask, rhs);
}
#ifdef PUGIXML_HAS_LONG_LONG
PUGI__FN bool xml_attribute::set_value(long long rhs)
{
if (!_attr) return false;
return impl::set_value_integer<unsigned long long>(_attr->value, _attr->header, impl::xml_memory_page_value_allocated_mask, rhs, rhs < 0);
}
PUGI__FN bool xml_attribute::set_value(unsigned long long rhs)
{
if (!_attr) return false;
return impl::set_value_integer<unsigned long long>(_attr->value, _attr->header, impl::xml_memory_page_value_allocated_mask, rhs, false);
}
#endif
#ifdef __BORLANDC__
PUGI__FN bool operator&&(const xml_attribute& lhs, bool rhs)
{
return (bool)lhs && rhs;
}
PUGI__FN bool operator||(const xml_attribute& lhs, bool rhs)
{
return (bool)lhs || rhs;
}
#endif
PUGI__FN xml_node::xml_node(): _root(0)
{
}
PUGI__FN xml_node::xml_node(xml_node_struct* p): _root(p)
{
}
PUGI__FN static void unspecified_bool_xml_node(xml_node***)
{
}
PUGI__FN xml_node::operator xml_node::unspecified_bool_type() const
{
return _root ? unspecified_bool_xml_node : 0;
}
PUGI__FN bool xml_node::operator!() const
{
return !_root;
}
PUGI__FN xml_node::iterator xml_node::begin() const
{
return iterator(_root ? _root->first_child + 0 : 0, _root);
}
PUGI__FN xml_node::iterator xml_node::end() const
{
return iterator(0, _root);
}
PUGI__FN xml_node::attribute_iterator xml_node::attributes_begin() const
{
return attribute_iterator(_root ? _root->first_attribute + 0 : 0, _root);
}
PUGI__FN xml_node::attribute_iterator xml_node::attributes_end() const
{
return attribute_iterator(0, _root);
}
PUGI__FN xml_object_range<xml_node_iterator> xml_node::children() const
{
return xml_object_range<xml_node_iterator>(begin(), end());
}
PUGI__FN xml_object_range<xml_named_node_iterator> xml_node::children(const char_t* name_) const
{
return xml_object_range<xml_named_node_iterator>(xml_named_node_iterator(child(name_)._root, _root, name_), xml_named_node_iterator(0, _root, name_));
}
PUGI__FN xml_object_range<xml_attribute_iterator> xml_node::attributes() const
{
return xml_object_range<xml_attribute_iterator>(attributes_begin(), attributes_end());
}
PUGI__FN bool xml_node::operator==(const xml_node& r) const
{
return (_root == r._root);
}
PUGI__FN bool xml_node::operator!=(const xml_node& r) const
{
return (_root != r._root);
}
PUGI__FN bool xml_node::operator<(const xml_node& r) const
{
return (_root < r._root);
}
PUGI__FN bool xml_node::operator>(const xml_node& r) const
{
return (_root > r._root);
}
PUGI__FN bool xml_node::operator<=(const xml_node& r) const
{
return (_root <= r._root);
}
PUGI__FN bool xml_node::operator>=(const xml_node& r) const
{
return (_root >= r._root);
}
PUGI__FN bool xml_node::empty() const
{
return !_root;
}
PUGI__FN const char_t* xml_node::name() const
{
return (_root && _root->name) ? _root->name + 0 : PUGIXML_TEXT("");
}
PUGI__FN xml_node_type xml_node::type() const
{
return _root ? PUGI__NODETYPE(_root) : node_null;
}
PUGI__FN const char_t* xml_node::value() const
{
return (_root && _root->value) ? _root->value + 0 : PUGIXML_TEXT("");
}
PUGI__FN xml_node xml_node::child(const char_t* name_) const
{
if (!_root) return xml_node();
for (xml_node_struct* i = _root->first_child; i; i = i->next_sibling)
if (i->name && impl::strequal(name_, i->name)) return xml_node(i);
return xml_node();
}
PUGI__FN xml_attribute xml_node::attribute(const char_t* name_) const
{
if (!_root) return xml_attribute();
for (xml_attribute_struct* i = _root->first_attribute; i; i = i->next_attribute)
if (i->name && impl::strequal(name_, i->name))
return xml_attribute(i);
return xml_attribute();
}
PUGI__FN xml_node xml_node::next_sibling(const char_t* name_) const
{
if (!_root) return xml_node();
for (xml_node_struct* i = _root->next_sibling; i; i = i->next_sibling)
if (i->name && impl::strequal(name_, i->name)) return xml_node(i);
return xml_node();
}
PUGI__FN xml_node xml_node::next_sibling() const
{
return _root ? xml_node(_root->next_sibling) : xml_node();
}
PUGI__FN xml_node xml_node::previous_sibling(const char_t* name_) const
{
if (!_root) return xml_node();
for (xml_node_struct* i = _root->prev_sibling_c; i->next_sibling; i = i->prev_sibling_c)
if (i->name && impl::strequal(name_, i->name)) return xml_node(i);
return xml_node();
}
PUGI__FN xml_attribute xml_node::attribute(const char_t* name_, xml_attribute& hint_) const
{
xml_attribute_struct* hint = hint_._attr;
// if hint is not an attribute of node, behavior is not defined
assert(!hint || (_root && impl::is_attribute_of(hint, _root)));
if (!_root) return xml_attribute();
// optimistically search from hint up until the end
for (xml_attribute_struct* i = hint; i; i = i->next_attribute)
if (i->name && impl::strequal(name_, i->name))
{
// update hint to maximize efficiency of searching for consecutive attributes
hint_._attr = i->next_attribute;
return xml_attribute(i);
}
// wrap around and search from the first attribute until the hint
// 'j' null pointer check is technically redundant, but it prevents a crash in case the assertion above fails
for (xml_attribute_struct* j = _root->first_attribute; j && j != hint; j = j->next_attribute)
if (j->name && impl::strequal(name_, j->name))
{
// update hint to maximize efficiency of searching for consecutive attributes
hint_._attr = j->next_attribute;
return xml_attribute(j);
}
return xml_attribute();
}
PUGI__FN xml_node xml_node::previous_sibling() const
{
if (!_root) return xml_node();
if (_root->prev_sibling_c->next_sibling) return xml_node(_root->prev_sibling_c);
else return xml_node();
}
PUGI__FN xml_node xml_node::parent() const
{
return _root ? xml_node(_root->parent) : xml_node();
}
PUGI__FN xml_node xml_node::root() const
{
return _root ? xml_node(&impl::get_document(_root)) : xml_node();
}
PUGI__FN xml_text xml_node::text() const
{
return xml_text(_root);
}
PUGI__FN const char_t* xml_node::child_value() const
{
if (!_root) return PUGIXML_TEXT("");
// element nodes can have value if parse_embed_pcdata was used
if (PUGI__NODETYPE(_root) == node_element && _root->value)
return _root->value;
for (xml_node_struct* i = _root->first_child; i; i = i->next_sibling)
if (impl::is_text_node(i) && i->value)
return i->value;
return PUGIXML_TEXT("");
}
PUGI__FN const char_t* xml_node::child_value(const char_t* name_) const
{
return child(name_).child_value();
}
PUGI__FN xml_attribute xml_node::first_attribute() const
{
return _root ? xml_attribute(_root->first_attribute) : xml_attribute();
}
PUGI__FN xml_attribute xml_node::last_attribute() const
{
return _root && _root->first_attribute ? xml_attribute(_root->first_attribute->prev_attribute_c) : xml_attribute();
}
PUGI__FN xml_node xml_node::first_child() const
{
return _root ? xml_node(_root->first_child) : xml_node();
}
PUGI__FN xml_node xml_node::last_child() const
{
return _root && _root->first_child ? xml_node(_root->first_child->prev_sibling_c) : xml_node();
}
PUGI__FN bool xml_node::set_name(const char_t* rhs)
{
xml_node_type type_ = _root ? PUGI__NODETYPE(_root) : node_null;
if (type_ != node_element && type_ != node_pi && type_ != node_declaration)
return false;
return impl::strcpy_insitu(_root->name, _root->header, impl::xml_memory_page_name_allocated_mask, rhs, impl::strlength(rhs));
}
PUGI__FN bool xml_node::set_value(const char_t* rhs)
{
xml_node_type type_ = _root ? PUGI__NODETYPE(_root) : node_null;
if (type_ != node_pcdata && type_ != node_cdata && type_ != node_comment && type_ != node_pi && type_ != node_doctype)
return false;
return impl::strcpy_insitu(_root->value, _root->header, impl::xml_memory_page_value_allocated_mask, rhs, impl::strlength(rhs));
}
PUGI__FN xml_attribute xml_node::append_attribute(const char_t* name_)
{
if (!impl::allow_insert_attribute(type())) return xml_attribute();
impl::xml_allocator& alloc = impl::get_allocator(_root);
if (!alloc.reserve()) return xml_attribute();
xml_attribute a(impl::allocate_attribute(alloc));
if (!a) return xml_attribute();
impl::append_attribute(a._attr, _root);
a.set_name(name_);
return a;
}
PUGI__FN xml_attribute xml_node::prepend_attribute(const char_t* name_)
{
if (!impl::allow_insert_attribute(type())) return xml_attribute();
impl::xml_allocator& alloc = impl::get_allocator(_root);
if (!alloc.reserve()) return xml_attribute();
xml_attribute a(impl::allocate_attribute(alloc));
if (!a) return xml_attribute();
impl::prepend_attribute(a._attr, _root);
a.set_name(name_);
return a;
}
PUGI__FN xml_attribute xml_node::insert_attribute_after(const char_t* name_, const xml_attribute& attr)
{
if (!impl::allow_insert_attribute(type())) return xml_attribute();
if (!attr || !impl::is_attribute_of(attr._attr, _root)) return xml_attribute();
impl::xml_allocator& alloc = impl::get_allocator(_root);
if (!alloc.reserve()) return xml_attribute();
xml_attribute a(impl::allocate_attribute(alloc));
if (!a) return xml_attribute();
impl::insert_attribute_after(a._attr, attr._attr, _root);
a.set_name(name_);
return a;
}
PUGI__FN xml_attribute xml_node::insert_attribute_before(const char_t* name_, const xml_attribute& attr)
{
if (!impl::allow_insert_attribute(type())) return xml_attribute();
if (!attr || !impl::is_attribute_of(attr._attr, _root)) return xml_attribute();
impl::xml_allocator& alloc = impl::get_allocator(_root);
if (!alloc.reserve()) return xml_attribute();
xml_attribute a(impl::allocate_attribute(alloc));
if (!a) return xml_attribute();
impl::insert_attribute_before(a._attr, attr._attr, _root);
a.set_name(name_);
return a;
}
PUGI__FN xml_attribute xml_node::append_copy(const xml_attribute& proto)
{
if (!proto) return xml_attribute();
if (!impl::allow_insert_attribute(type())) return xml_attribute();
impl::xml_allocator& alloc = impl::get_allocator(_root);
if (!alloc.reserve()) return xml_attribute();
xml_attribute a(impl::allocate_attribute(alloc));
if (!a) return xml_attribute();
impl::append_attribute(a._attr, _root);
impl::node_copy_attribute(a._attr, proto._attr);
return a;
}
PUGI__FN xml_attribute xml_node::prepend_copy(const xml_attribute& proto)
{
if (!proto) return xml_attribute();
if (!impl::allow_insert_attribute(type())) return xml_attribute();
impl::xml_allocator& alloc = impl::get_allocator(_root);
if (!alloc.reserve()) return xml_attribute();
xml_attribute a(impl::allocate_attribute(alloc));
if (!a) return xml_attribute();
impl::prepend_attribute(a._attr, _root);
impl::node_copy_attribute(a._attr, proto._attr);
return a;
}
PUGI__FN xml_attribute xml_node::insert_copy_after(const xml_attribute& proto, const xml_attribute& attr)
{
if (!proto) return xml_attribute();
if (!impl::allow_insert_attribute(type())) return xml_attribute();
if (!attr || !impl::is_attribute_of(attr._attr, _root)) return xml_attribute();
impl::xml_allocator& alloc = impl::get_allocator(_root);
if (!alloc.reserve()) return xml_attribute();
xml_attribute a(impl::allocate_attribute(alloc));
if (!a) return xml_attribute();
impl::insert_attribute_after(a._attr, attr._attr, _root);
impl::node_copy_attribute(a._attr, proto._attr);
return a;
}
PUGI__FN xml_attribute xml_node::insert_copy_before(const xml_attribute& proto, const xml_attribute& attr)
{
if (!proto) return xml_attribute();
if (!impl::allow_insert_attribute(type())) return xml_attribute();
if (!attr || !impl::is_attribute_of(attr._attr, _root)) return xml_attribute();
impl::xml_allocator& alloc = impl::get_allocator(_root);
if (!alloc.reserve()) return xml_attribute();
xml_attribute a(impl::allocate_attribute(alloc));
if (!a) return xml_attribute();
impl::insert_attribute_before(a._attr, attr._attr, _root);
impl::node_copy_attribute(a._attr, proto._attr);
return a;
}
PUGI__FN xml_node xml_node::append_child(xml_node_type type_)
{
if (!impl::allow_insert_child(type(), type_)) return xml_node();
impl::xml_allocator& alloc = impl::get_allocator(_root);
if (!alloc.reserve()) return xml_node();
xml_node n(impl::allocate_node(alloc, type_));
if (!n) return xml_node();
impl::append_node(n._root, _root);
if (type_ == node_declaration) n.set_name(PUGIXML_TEXT("xml"));
return n;
}
PUGI__FN xml_node xml_node::prepend_child(xml_node_type type_)
{
if (!impl::allow_insert_child(type(), type_)) return xml_node();
impl::xml_allocator& alloc = impl::get_allocator(_root);
if (!alloc.reserve()) return xml_node();
xml_node n(impl::allocate_node(alloc, type_));
if (!n) return xml_node();
impl::prepend_node(n._root, _root);
if (type_ == node_declaration) n.set_name(PUGIXML_TEXT("xml"));
return n;
}
PUGI__FN xml_node xml_node::insert_child_before(xml_node_type type_, const xml_node& node)
{
if (!impl::allow_insert_child(type(), type_)) return xml_node();
if (!node._root || node._root->parent != _root) return xml_node();
impl::xml_allocator& alloc = impl::get_allocator(_root);
if (!alloc.reserve()) return xml_node();
xml_node n(impl::allocate_node(alloc, type_));
if (!n) return xml_node();
impl::insert_node_before(n._root, node._root);
if (type_ == node_declaration) n.set_name(PUGIXML_TEXT("xml"));
return n;
}
PUGI__FN xml_node xml_node::insert_child_after(xml_node_type type_, const xml_node& node)
{
if (!impl::allow_insert_child(type(), type_)) return xml_node();
if (!node._root || node._root->parent != _root) return xml_node();
impl::xml_allocator& alloc = impl::get_allocator(_root);
if (!alloc.reserve()) return xml_node();
xml_node n(impl::allocate_node(alloc, type_));
if (!n) return xml_node();
impl::insert_node_after(n._root, node._root);
if (type_ == node_declaration) n.set_name(PUGIXML_TEXT("xml"));
return n;
}
PUGI__FN xml_node xml_node::append_child(const char_t* name_)
{
xml_node result = append_child(node_element);
result.set_name(name_);
return result;
}
PUGI__FN xml_node xml_node::prepend_child(const char_t* name_)
{
xml_node result = prepend_child(node_element);
result.set_name(name_);
return result;
}
PUGI__FN xml_node xml_node::insert_child_after(const char_t* name_, const xml_node& node)
{
xml_node result = insert_child_after(node_element, node);
result.set_name(name_);
return result;
}
PUGI__FN xml_node xml_node::insert_child_before(const char_t* name_, const xml_node& node)
{
xml_node result = insert_child_before(node_element, node);
result.set_name(name_);
return result;
}
PUGI__FN xml_node xml_node::append_copy(const xml_node& proto)
{
xml_node_type type_ = proto.type();
if (!impl::allow_insert_child(type(), type_)) return xml_node();
impl::xml_allocator& alloc = impl::get_allocator(_root);
if (!alloc.reserve()) return xml_node();
xml_node n(impl::allocate_node(alloc, type_));
if (!n) return xml_node();
impl::append_node(n._root, _root);
impl::node_copy_tree(n._root, proto._root);
return n;
}
PUGI__FN xml_node xml_node::prepend_copy(const xml_node& proto)
{
xml_node_type type_ = proto.type();
if (!impl::allow_insert_child(type(), type_)) return xml_node();
impl::xml_allocator& alloc = impl::get_allocator(_root);
if (!alloc.reserve()) return xml_node();
xml_node n(impl::allocate_node(alloc, type_));
if (!n) return xml_node();
impl::prepend_node(n._root, _root);
impl::node_copy_tree(n._root, proto._root);
return n;
}
PUGI__FN xml_node xml_node::insert_copy_after(const xml_node& proto, const xml_node& node)
{
xml_node_type type_ = proto.type();
if (!impl::allow_insert_child(type(), type_)) return xml_node();
if (!node._root || node._root->parent != _root) return xml_node();
impl::xml_allocator& alloc = impl::get_allocator(_root);
if (!alloc.reserve()) return xml_node();
xml_node n(impl::allocate_node(alloc, type_));
if (!n) return xml_node();
impl::insert_node_after(n._root, node._root);
impl::node_copy_tree(n._root, proto._root);
return n;
}
PUGI__FN xml_node xml_node::insert_copy_before(const xml_node& proto, const xml_node& node)
{
xml_node_type type_ = proto.type();
if (!impl::allow_insert_child(type(), type_)) return xml_node();
if (!node._root || node._root->parent != _root) return xml_node();
impl::xml_allocator& alloc = impl::get_allocator(_root);
if (!alloc.reserve()) return xml_node();
xml_node n(impl::allocate_node(alloc, type_));
if (!n) return xml_node();
impl::insert_node_before(n._root, node._root);
impl::node_copy_tree(n._root, proto._root);
return n;
}
PUGI__FN xml_node xml_node::append_move(const xml_node& moved)
{
if (!impl::allow_move(*this, moved)) return xml_node();
impl::xml_allocator& alloc = impl::get_allocator(_root);
if (!alloc.reserve()) return xml_node();
// disable document_buffer_order optimization since moving nodes around changes document order without changing buffer pointers
impl::get_document(_root).header |= impl::xml_memory_page_contents_shared_mask;
impl::remove_node(moved._root);
impl::append_node(moved._root, _root);
return moved;
}
PUGI__FN xml_node xml_node::prepend_move(const xml_node& moved)
{
if (!impl::allow_move(*this, moved)) return xml_node();
impl::xml_allocator& alloc = impl::get_allocator(_root);
if (!alloc.reserve()) return xml_node();
// disable document_buffer_order optimization since moving nodes around changes document order without changing buffer pointers
impl::get_document(_root).header |= impl::xml_memory_page_contents_shared_mask;
impl::remove_node(moved._root);
impl::prepend_node(moved._root, _root);
return moved;
}
PUGI__FN xml_node xml_node::insert_move_after(const xml_node& moved, const xml_node& node)
{
if (!impl::allow_move(*this, moved)) return xml_node();
if (!node._root || node._root->parent != _root) return xml_node();
if (moved._root == node._root) return xml_node();
impl::xml_allocator& alloc = impl::get_allocator(_root);
if (!alloc.reserve()) return xml_node();
// disable document_buffer_order optimization since moving nodes around changes document order without changing buffer pointers
impl::get_document(_root).header |= impl::xml_memory_page_contents_shared_mask;
impl::remove_node(moved._root);
impl::insert_node_after(moved._root, node._root);
return moved;
}
PUGI__FN xml_node xml_node::insert_move_before(const xml_node& moved, const xml_node& node)
{
if (!impl::allow_move(*this, moved)) return xml_node();
if (!node._root || node._root->parent != _root) return xml_node();
if (moved._root == node._root) return xml_node();
impl::xml_allocator& alloc = impl::get_allocator(_root);
if (!alloc.reserve()) return xml_node();
// disable document_buffer_order optimization since moving nodes around changes document order without changing buffer pointers
impl::get_document(_root).header |= impl::xml_memory_page_contents_shared_mask;
impl::remove_node(moved._root);
impl::insert_node_before(moved._root, node._root);
return moved;
}
PUGI__FN bool xml_node::remove_attribute(const char_t* name_)
{
return remove_attribute(attribute(name_));
}
PUGI__FN bool xml_node::remove_attribute(const xml_attribute& a)
{
if (!_root || !a._attr) return false;
if (!impl::is_attribute_of(a._attr, _root)) return false;
impl::xml_allocator& alloc = impl::get_allocator(_root);
if (!alloc.reserve()) return false;
impl::remove_attribute(a._attr, _root);
impl::destroy_attribute(a._attr, alloc);
return true;
}
PUGI__FN bool xml_node::remove_attributes()
{
if (!_root) return false;
impl::xml_allocator& alloc = impl::get_allocator(_root);
if (!alloc.reserve()) return false;
for (xml_attribute_struct* attr = _root->first_attribute; attr; )
{
xml_attribute_struct* next = attr->next_attribute;
impl::destroy_attribute(attr, alloc);
attr = next;
}
_root->first_attribute = 0;
return true;
}
PUGI__FN bool xml_node::remove_child(const char_t* name_)
{
return remove_child(child(name_));
}
PUGI__FN bool xml_node::remove_child(const xml_node& n)
{
if (!_root || !n._root || n._root->parent != _root) return false;
impl::xml_allocator& alloc = impl::get_allocator(_root);
if (!alloc.reserve()) return false;
impl::remove_node(n._root);
impl::destroy_node(n._root, alloc);
return true;
}
PUGI__FN bool xml_node::remove_children()
{
if (!_root) return false;
impl::xml_allocator& alloc = impl::get_allocator(_root);
if (!alloc.reserve()) return false;
for (xml_node_struct* child = _root->first_child; child; )
{
xml_node_struct* next = child->next_sibling;
impl::destroy_node(child, alloc);
child = next;
}
_root->first_child = 0;
return true;
}
PUGI__FN xml_parse_result xml_node::append_buffer(const void* contents, size_t size, unsigned int options, xml_encoding encoding)
{
// append_buffer is only valid for elements/documents
if (!impl::allow_insert_child(type(), node_element)) return impl::make_parse_result(status_append_invalid_root);
// get document node
impl::xml_document_struct* doc = &impl::get_document(_root);
// disable document_buffer_order optimization since in a document with multiple buffers comparing buffer pointers does not make sense
doc->header |= impl::xml_memory_page_contents_shared_mask;
// get extra buffer element (we'll store the document fragment buffer there so that we can deallocate it later)
impl::xml_memory_page* page = 0;
impl::xml_extra_buffer* extra = static_cast<impl::xml_extra_buffer*>(doc->allocate_memory(sizeof(impl::xml_extra_buffer) + sizeof(void*), page));
(void)page;
if (!extra) return impl::make_parse_result(status_out_of_memory);
#ifdef PUGIXML_COMPACT
// align the memory block to a pointer boundary; this is required for compact mode where memory allocations are only 4b aligned
// note that this requires up to sizeof(void*)-1 additional memory, which the allocation above takes into account
extra = reinterpret_cast<impl::xml_extra_buffer*>((reinterpret_cast<uintptr_t>(extra) + (sizeof(void*) - 1)) & ~(sizeof(void*) - 1));
#endif
// add extra buffer to the list
extra->buffer = 0;
extra->next = doc->extra_buffers;
doc->extra_buffers = extra;
// name of the root has to be NULL before parsing - otherwise closing node mismatches will not be detected at the top level
impl::name_null_sentry sentry(_root);
return impl::load_buffer_impl(doc, _root, const_cast<void*>(contents), size, options, encoding, false, false, &extra->buffer);
}
PUGI__FN xml_node xml_node::find_child_by_attribute(const char_t* name_, const char_t* attr_name, const char_t* attr_value) const
{
if (!_root) return xml_node();
for (xml_node_struct* i = _root->first_child; i; i = i->next_sibling)
if (i->name && impl::strequal(name_, i->name))
{
for (xml_attribute_struct* a = i->first_attribute; a; a = a->next_attribute)
if (a->name && impl::strequal(attr_name, a->name) && impl::strequal(attr_value, a->value ? a->value + 0 : PUGIXML_TEXT("")))
return xml_node(i);
}
return xml_node();
}
PUGI__FN xml_node xml_node::find_child_by_attribute(const char_t* attr_name, const char_t* attr_value) const
{
if (!_root) return xml_node();
for (xml_node_struct* i = _root->first_child; i; i = i->next_sibling)
for (xml_attribute_struct* a = i->first_attribute; a; a = a->next_attribute)
if (a->name && impl::strequal(attr_name, a->name) && impl::strequal(attr_value, a->value ? a->value + 0 : PUGIXML_TEXT("")))
return xml_node(i);
return xml_node();
}
#ifndef PUGIXML_NO_STL
PUGI__FN string_t xml_node::path(char_t delimiter) const
{
if (!_root) return string_t();
size_t offset = 0;
for (xml_node_struct* i = _root; i; i = i->parent)
{
offset += (i != _root);
offset += i->name ? impl::strlength(i->name) : 0;
}
string_t result;
result.resize(offset);
for (xml_node_struct* j = _root; j; j = j->parent)
{
if (j != _root)
result[--offset] = delimiter;
if (j->name)
{
size_t length = impl::strlength(j->name);
offset -= length;
memcpy(&result[offset], j->name, length * sizeof(char_t));
}
}
assert(offset == 0);
return result;
}
#endif
PUGI__FN xml_node xml_node::first_element_by_path(const char_t* path_, char_t delimiter) const
{
xml_node context = path_[0] == delimiter ? root() : *this;
if (!context._root) return xml_node();
const char_t* path_segment = path_;
while (*path_segment == delimiter) ++path_segment;
const char_t* path_segment_end = path_segment;
while (*path_segment_end && *path_segment_end != delimiter) ++path_segment_end;
if (path_segment == path_segment_end) return context;
const char_t* next_segment = path_segment_end;
while (*next_segment == delimiter) ++next_segment;
if (*path_segment == '.' && path_segment + 1 == path_segment_end)
return context.first_element_by_path(next_segment, delimiter);
else if (*path_segment == '.' && *(path_segment+1) == '.' && path_segment + 2 == path_segment_end)
return context.parent().first_element_by_path(next_segment, delimiter);
else
{
for (xml_node_struct* j = context._root->first_child; j; j = j->next_sibling)
{
if (j->name && impl::strequalrange(j->name, path_segment, static_cast<size_t>(path_segment_end - path_segment)))
{
xml_node subsearch = xml_node(j).first_element_by_path(next_segment, delimiter);
if (subsearch) return subsearch;
}
}
return xml_node();
}
}
PUGI__FN bool xml_node::traverse(xml_tree_walker& walker)
{
walker._depth = -1;
xml_node arg_begin(_root);
if (!walker.begin(arg_begin)) return false;
xml_node_struct* cur = _root ? _root->first_child + 0 : 0;
if (cur)
{
++walker._depth;
do
{
xml_node arg_for_each(cur);
if (!walker.for_each(arg_for_each))
return false;
if (cur->first_child)
{
++walker._depth;
cur = cur->first_child;
}
else if (cur->next_sibling)
cur = cur->next_sibling;
else
{
while (!cur->next_sibling && cur != _root && cur->parent)
{
--walker._depth;
cur = cur->parent;
}
if (cur != _root)
cur = cur->next_sibling;
}
}
while (cur && cur != _root);
}
assert(walker._depth == -1);
xml_node arg_end(_root);
return walker.end(arg_end);
}
PUGI__FN size_t xml_node::hash_value() const
{
return static_cast<size_t>(reinterpret_cast<uintptr_t>(_root) / sizeof(xml_node_struct));
}
PUGI__FN xml_node_struct* xml_node::internal_object() const
{
return _root;
}
PUGI__FN void xml_node::print(xml_writer& writer, const char_t* indent, unsigned int flags, xml_encoding encoding, unsigned int depth) const
{
if (!_root) return;
impl::xml_buffered_writer buffered_writer(writer, encoding);
impl::node_output(buffered_writer, _root, indent, flags, depth);
buffered_writer.flush();
}
#ifndef PUGIXML_NO_STL
PUGI__FN void xml_node::print(std::basic_ostream<char, std::char_traits<char> >& stream, const char_t* indent, unsigned int flags, xml_encoding encoding, unsigned int depth) const
{
xml_writer_stream writer(stream);
print(writer, indent, flags, encoding, depth);
}
PUGI__FN void xml_node::print(std::basic_ostream<wchar_t, std::char_traits<wchar_t> >& stream, const char_t* indent, unsigned int flags, unsigned int depth) const
{
xml_writer_stream writer(stream);
print(writer, indent, flags, encoding_wchar, depth);
}
#endif
PUGI__FN ptrdiff_t xml_node::offset_debug() const
{
if (!_root) return -1;
impl::xml_document_struct& doc = impl::get_document(_root);
// we can determine the offset reliably only if there is exactly once parse buffer
if (!doc.buffer || doc.extra_buffers) return -1;
switch (type())
{
case node_document:
return 0;
case node_element:
case node_declaration:
case node_pi:
return _root->name && (_root->header & impl::xml_memory_page_name_allocated_or_shared_mask) == 0 ? _root->name - doc.buffer : -1;
case node_pcdata:
case node_cdata:
case node_comment:
case node_doctype:
return _root->value && (_root->header & impl::xml_memory_page_value_allocated_or_shared_mask) == 0 ? _root->value - doc.buffer : -1;
default:
assert(false && "Invalid node type"); // unreachable
return -1;
}
}
#ifdef __BORLANDC__
PUGI__FN bool operator&&(const xml_node& lhs, bool rhs)
{
return (bool)lhs && rhs;
}
PUGI__FN bool operator||(const xml_node& lhs, bool rhs)
{
return (bool)lhs || rhs;
}
#endif
PUGI__FN xml_text::xml_text(xml_node_struct* root): _root(root)
{
}
PUGI__FN xml_node_struct* xml_text::_data() const
{
if (!_root || impl::is_text_node(_root)) return _root;
// element nodes can have value if parse_embed_pcdata was used
if (PUGI__NODETYPE(_root) == node_element && _root->value)
return _root;
for (xml_node_struct* node = _root->first_child; node; node = node->next_sibling)
if (impl::is_text_node(node))
return node;
return 0;
}
PUGI__FN xml_node_struct* xml_text::_data_new()
{
xml_node_struct* d = _data();
if (d) return d;
return xml_node(_root).append_child(node_pcdata).internal_object();
}
PUGI__FN xml_text::xml_text(): _root(0)
{
}
PUGI__FN static void unspecified_bool_xml_text(xml_text***)
{
}
PUGI__FN xml_text::operator xml_text::unspecified_bool_type() const
{
return _data() ? unspecified_bool_xml_text : 0;
}
PUGI__FN bool xml_text::operator!() const
{
return !_data();
}
PUGI__FN bool xml_text::empty() const
{
return _data() == 0;
}
PUGI__FN const char_t* xml_text::get() const
{
xml_node_struct* d = _data();
return (d && d->value) ? d->value + 0 : PUGIXML_TEXT("");
}
PUGI__FN const char_t* xml_text::as_string(const char_t* def) const
{
xml_node_struct* d = _data();
return (d && d->value) ? d->value + 0 : def;
}
PUGI__FN int xml_text::as_int(int def) const
{
xml_node_struct* d = _data();
return (d && d->value) ? impl::get_value_int(d->value) : def;
}
PUGI__FN unsigned int xml_text::as_uint(unsigned int def) const
{
xml_node_struct* d = _data();
return (d && d->value) ? impl::get_value_uint(d->value) : def;
}
PUGI__FN double xml_text::as_double(double def) const
{
xml_node_struct* d = _data();
return (d && d->value) ? impl::get_value_double(d->value) : def;
}
PUGI__FN float xml_text::as_float(float def) const
{
xml_node_struct* d = _data();
return (d && d->value) ? impl::get_value_float(d->value) : def;
}
PUGI__FN bool xml_text::as_bool(bool def) const
{
xml_node_struct* d = _data();
return (d && d->value) ? impl::get_value_bool(d->value) : def;
}
#ifdef PUGIXML_HAS_LONG_LONG
PUGI__FN long long xml_text::as_llong(long long def) const
{
xml_node_struct* d = _data();
return (d && d->value) ? impl::get_value_llong(d->value) : def;
}
PUGI__FN unsigned long long xml_text::as_ullong(unsigned long long def) const
{
xml_node_struct* d = _data();
return (d && d->value) ? impl::get_value_ullong(d->value) : def;
}
#endif
PUGI__FN bool xml_text::set(const char_t* rhs)
{
xml_node_struct* dn = _data_new();
return dn ? impl::strcpy_insitu(dn->value, dn->header, impl::xml_memory_page_value_allocated_mask, rhs, impl::strlength(rhs)) : false;
}
PUGI__FN bool xml_text::set(int rhs)
{
xml_node_struct* dn = _data_new();
return dn ? impl::set_value_integer<unsigned int>(dn->value, dn->header, impl::xml_memory_page_value_allocated_mask, rhs, rhs < 0) : false;
}
PUGI__FN bool xml_text::set(unsigned int rhs)
{
xml_node_struct* dn = _data_new();
return dn ? impl::set_value_integer<unsigned int>(dn->value, dn->header, impl::xml_memory_page_value_allocated_mask, rhs, false) : false;
}
PUGI__FN bool xml_text::set(long rhs)
{
xml_node_struct* dn = _data_new();
return dn ? impl::set_value_integer<unsigned long>(dn->value, dn->header, impl::xml_memory_page_value_allocated_mask, rhs, rhs < 0) : false;
}
PUGI__FN bool xml_text::set(unsigned long rhs)
{
xml_node_struct* dn = _data_new();
return dn ? impl::set_value_integer<unsigned long>(dn->value, dn->header, impl::xml_memory_page_value_allocated_mask, rhs, false) : false;
}
PUGI__FN bool xml_text::set(float rhs)
{
xml_node_struct* dn = _data_new();
return dn ? impl::set_value_convert(dn->value, dn->header, impl::xml_memory_page_value_allocated_mask, rhs, default_float_precision) : false;
}
PUGI__FN bool xml_text::set(float rhs, int precision)
{
xml_node_struct* dn = _data_new();
return dn ? impl::set_value_convert(dn->value, dn->header, impl::xml_memory_page_value_allocated_mask, rhs, precision) : false;
}
PUGI__FN bool xml_text::set(double rhs)
{
xml_node_struct* dn = _data_new();
return dn ? impl::set_value_convert(dn->value, dn->header, impl::xml_memory_page_value_allocated_mask, rhs, default_double_precision) : false;
}
PUGI__FN bool xml_text::set(double rhs, int precision)
{
xml_node_struct* dn = _data_new();
return dn ? impl::set_value_convert(dn->value, dn->header, impl::xml_memory_page_value_allocated_mask, rhs, precision) : false;
}
PUGI__FN bool xml_text::set(bool rhs)
{
xml_node_struct* dn = _data_new();
return dn ? impl::set_value_bool(dn->value, dn->header, impl::xml_memory_page_value_allocated_mask, rhs) : false;
}
#ifdef PUGIXML_HAS_LONG_LONG
PUGI__FN bool xml_text::set(long long rhs)
{
xml_node_struct* dn = _data_new();
return dn ? impl::set_value_integer<unsigned long long>(dn->value, dn->header, impl::xml_memory_page_value_allocated_mask, rhs, rhs < 0) : false;
}
PUGI__FN bool xml_text::set(unsigned long long rhs)
{
xml_node_struct* dn = _data_new();
return dn ? impl::set_value_integer<unsigned long long>(dn->value, dn->header, impl::xml_memory_page_value_allocated_mask, rhs, false) : false;
}
#endif
PUGI__FN xml_text& xml_text::operator=(const char_t* rhs)
{
set(rhs);
return *this;
}
PUGI__FN xml_text& xml_text::operator=(int rhs)
{
set(rhs);
return *this;
}
PUGI__FN xml_text& xml_text::operator=(unsigned int rhs)
{
set(rhs);
return *this;
}
PUGI__FN xml_text& xml_text::operator=(long rhs)
{
set(rhs);
return *this;
}
PUGI__FN xml_text& xml_text::operator=(unsigned long rhs)
{
set(rhs);
return *this;
}
PUGI__FN xml_text& xml_text::operator=(double rhs)
{
set(rhs);
return *this;
}
PUGI__FN xml_text& xml_text::operator=(float rhs)
{
set(rhs);
return *this;
}
PUGI__FN xml_text& xml_text::operator=(bool rhs)
{
set(rhs);
return *this;
}
#ifdef PUGIXML_HAS_LONG_LONG
PUGI__FN xml_text& xml_text::operator=(long long rhs)
{
set(rhs);
return *this;
}
PUGI__FN xml_text& xml_text::operator=(unsigned long long rhs)
{
set(rhs);
return *this;
}
#endif
PUGI__FN xml_node xml_text::data() const
{
return xml_node(_data());
}
#ifdef __BORLANDC__
PUGI__FN bool operator&&(const xml_text& lhs, bool rhs)
{
return (bool)lhs && rhs;
}
PUGI__FN bool operator||(const xml_text& lhs, bool rhs)
{
return (bool)lhs || rhs;
}
#endif
PUGI__FN xml_node_iterator::xml_node_iterator()
{
}
PUGI__FN xml_node_iterator::xml_node_iterator(const xml_node& node): _wrap(node), _parent(node.parent())
{
}
PUGI__FN xml_node_iterator::xml_node_iterator(xml_node_struct* ref, xml_node_struct* parent): _wrap(ref), _parent(parent)
{
}
PUGI__FN bool xml_node_iterator::operator==(const xml_node_iterator& rhs) const
{
return _wrap._root == rhs._wrap._root && _parent._root == rhs._parent._root;
}
PUGI__FN bool xml_node_iterator::operator!=(const xml_node_iterator& rhs) const
{
return _wrap._root != rhs._wrap._root || _parent._root != rhs._parent._root;
}
PUGI__FN xml_node& xml_node_iterator::operator*() const
{
assert(_wrap._root);
return _wrap;
}
PUGI__FN xml_node* xml_node_iterator::operator->() const
{
assert(_wrap._root);
return const_cast<xml_node*>(&_wrap); // BCC5 workaround
}
PUGI__FN const xml_node_iterator& xml_node_iterator::operator++()
{
assert(_wrap._root);
_wrap._root = _wrap._root->next_sibling;
return *this;
}
PUGI__FN xml_node_iterator xml_node_iterator::operator++(int)
{
xml_node_iterator temp = *this;
++*this;
return temp;
}
PUGI__FN const xml_node_iterator& xml_node_iterator::operator--()
{
_wrap = _wrap._root ? _wrap.previous_sibling() : _parent.last_child();
return *this;
}
PUGI__FN xml_node_iterator xml_node_iterator::operator--(int)
{
xml_node_iterator temp = *this;
--*this;
return temp;
}
PUGI__FN xml_attribute_iterator::xml_attribute_iterator()
{
}
PUGI__FN xml_attribute_iterator::xml_attribute_iterator(const xml_attribute& attr, const xml_node& parent): _wrap(attr), _parent(parent)
{
}
PUGI__FN xml_attribute_iterator::xml_attribute_iterator(xml_attribute_struct* ref, xml_node_struct* parent): _wrap(ref), _parent(parent)
{
}
PUGI__FN bool xml_attribute_iterator::operator==(const xml_attribute_iterator& rhs) const
{
return _wrap._attr == rhs._wrap._attr && _parent._root == rhs._parent._root;
}
PUGI__FN bool xml_attribute_iterator::operator!=(const xml_attribute_iterator& rhs) const
{
return _wrap._attr != rhs._wrap._attr || _parent._root != rhs._parent._root;
}
PUGI__FN xml_attribute& xml_attribute_iterator::operator*() const
{
assert(_wrap._attr);
return _wrap;
}
PUGI__FN xml_attribute* xml_attribute_iterator::operator->() const
{
assert(_wrap._attr);
return const_cast<xml_attribute*>(&_wrap); // BCC5 workaround
}
PUGI__FN const xml_attribute_iterator& xml_attribute_iterator::operator++()
{
assert(_wrap._attr);
_wrap._attr = _wrap._attr->next_attribute;
return *this;
}
PUGI__FN xml_attribute_iterator xml_attribute_iterator::operator++(int)
{
xml_attribute_iterator temp = *this;
++*this;
return temp;
}
PUGI__FN const xml_attribute_iterator& xml_attribute_iterator::operator--()
{
_wrap = _wrap._attr ? _wrap.previous_attribute() : _parent.last_attribute();
return *this;
}
PUGI__FN xml_attribute_iterator xml_attribute_iterator::operator--(int)
{
xml_attribute_iterator temp = *this;
--*this;
return temp;
}
PUGI__FN xml_named_node_iterator::xml_named_node_iterator(): _name(0)
{
}
PUGI__FN xml_named_node_iterator::xml_named_node_iterator(const xml_node& node, const char_t* name): _wrap(node), _parent(node.parent()), _name(name)
{
}
PUGI__FN xml_named_node_iterator::xml_named_node_iterator(xml_node_struct* ref, xml_node_struct* parent, const char_t* name): _wrap(ref), _parent(parent), _name(name)
{
}
PUGI__FN bool xml_named_node_iterator::operator==(const xml_named_node_iterator& rhs) const
{
return _wrap._root == rhs._wrap._root && _parent._root == rhs._parent._root;
}
PUGI__FN bool xml_named_node_iterator::operator!=(const xml_named_node_iterator& rhs) const
{
return _wrap._root != rhs._wrap._root || _parent._root != rhs._parent._root;
}
PUGI__FN xml_node& xml_named_node_iterator::operator*() const
{
assert(_wrap._root);
return _wrap;
}
PUGI__FN xml_node* xml_named_node_iterator::operator->() const
{
assert(_wrap._root);
return const_cast<xml_node*>(&_wrap); // BCC5 workaround
}
PUGI__FN const xml_named_node_iterator& xml_named_node_iterator::operator++()
{
assert(_wrap._root);
_wrap = _wrap.next_sibling(_name);
return *this;
}
PUGI__FN xml_named_node_iterator xml_named_node_iterator::operator++(int)
{
xml_named_node_iterator temp = *this;
++*this;
return temp;
}
PUGI__FN const xml_named_node_iterator& xml_named_node_iterator::operator--()
{
if (_wrap._root)
_wrap = _wrap.previous_sibling(_name);
else
{
_wrap = _parent.last_child();
if (!impl::strequal(_wrap.name(), _name))
_wrap = _wrap.previous_sibling(_name);
}
return *this;
}
PUGI__FN xml_named_node_iterator xml_named_node_iterator::operator--(int)
{
xml_named_node_iterator temp = *this;
--*this;
return temp;
}
PUGI__FN xml_parse_result::xml_parse_result(): status(status_internal_error), offset(0), encoding(encoding_auto)
{
}
PUGI__FN xml_parse_result::operator bool() const
{
return status == status_ok;
}
PUGI__FN const char* xml_parse_result::description() const
{
switch (status)
{
case status_ok: return "No error";
case status_file_not_found: return "File was not found";
case status_io_error: return "Error reading from file/stream";
case status_out_of_memory: return "Could not allocate memory";
case status_internal_error: return "Internal error occurred";
case status_unrecognized_tag: return "Could not determine tag type";
case status_bad_pi: return "Error parsing document declaration/processing instruction";
case status_bad_comment: return "Error parsing comment";
case status_bad_cdata: return "Error parsing CDATA section";
case status_bad_doctype: return "Error parsing document type declaration";
case status_bad_pcdata: return "Error parsing PCDATA section";
case status_bad_start_element: return "Error parsing start element tag";
case status_bad_attribute: return "Error parsing element attribute";
case status_bad_end_element: return "Error parsing end element tag";
case status_end_element_mismatch: return "Start-end tags mismatch";
case status_append_invalid_root: return "Unable to append nodes: root is not an element or document";
case status_no_document_element: return "No document element found";
default: return "Unknown error";
}
}
PUGI__FN xml_document::xml_document(): _buffer(0)
{
_create();
}
PUGI__FN xml_document::~xml_document()
{
_destroy();
}
#ifdef PUGIXML_HAS_MOVE
PUGI__FN xml_document::xml_document(xml_document&& rhs) PUGIXML_NOEXCEPT_IF_NOT_COMPACT: _buffer(0)
{
_create();
_move(rhs);
}
PUGI__FN xml_document& xml_document::operator=(xml_document&& rhs) PUGIXML_NOEXCEPT_IF_NOT_COMPACT
{
if (this == &rhs) return *this;
_destroy();
_create();
_move(rhs);
return *this;
}
#endif
PUGI__FN void xml_document::reset()
{
_destroy();
_create();
}
PUGI__FN void xml_document::reset(const xml_document& proto)
{
reset();
impl::node_copy_tree(_root, proto._root);
}
PUGI__FN void xml_document::_create()
{
assert(!_root);
#ifdef PUGIXML_COMPACT
// space for page marker for the first page (uint32_t), rounded up to pointer size; assumes pointers are at least 32-bit
const size_t page_offset = sizeof(void*);
#else
const size_t page_offset = 0;
#endif
// initialize sentinel page
PUGI__STATIC_ASSERT(sizeof(impl::xml_memory_page) + sizeof(impl::xml_document_struct) + page_offset <= sizeof(_memory));
// prepare page structure
impl::xml_memory_page* page = impl::xml_memory_page::construct(_memory);
assert(page);
page->busy_size = impl::xml_memory_page_size;
// setup first page marker
#ifdef PUGIXML_COMPACT
// round-trip through void* to avoid 'cast increases required alignment of target type' warning
page->compact_page_marker = reinterpret_cast<uint32_t*>(static_cast<void*>(reinterpret_cast<char*>(page) + sizeof(impl::xml_memory_page)));
*page->compact_page_marker = sizeof(impl::xml_memory_page);
#endif
// allocate new root
_root = new (reinterpret_cast<char*>(page) + sizeof(impl::xml_memory_page) + page_offset) impl::xml_document_struct(page);
_root->prev_sibling_c = _root;
// setup sentinel page
page->allocator = static_cast<impl::xml_document_struct*>(_root);
// setup hash table pointer in allocator
#ifdef PUGIXML_COMPACT
page->allocator->_hash = &static_cast<impl::xml_document_struct*>(_root)->hash;
#endif
// verify the document allocation
assert(reinterpret_cast<char*>(_root) + sizeof(impl::xml_document_struct) <= _memory + sizeof(_memory));
}
PUGI__FN void xml_document::_destroy()
{
assert(_root);
// destroy static storage
if (_buffer)
{
impl::xml_memory::deallocate(_buffer);
_buffer = 0;
}
// destroy extra buffers (note: no need to destroy linked list nodes, they're allocated using document allocator)
for (impl::xml_extra_buffer* extra = static_cast<impl::xml_document_struct*>(_root)->extra_buffers; extra; extra = extra->next)
{
if (extra->buffer) impl::xml_memory::deallocate(extra->buffer);
}
// destroy dynamic storage, leave sentinel page (it's in static memory)
impl::xml_memory_page* root_page = PUGI__GETPAGE(_root);
assert(root_page && !root_page->prev);
assert(reinterpret_cast<char*>(root_page) >= _memory && reinterpret_cast<char*>(root_page) < _memory + sizeof(_memory));
for (impl::xml_memory_page* page = root_page->next; page; )
{
impl::xml_memory_page* next = page->next;
impl::xml_allocator::deallocate_page(page);
page = next;
}
#ifdef PUGIXML_COMPACT
// destroy hash table
static_cast<impl::xml_document_struct*>(_root)->hash.clear();
#endif
_root = 0;
}
#ifdef PUGIXML_HAS_MOVE
PUGI__FN void xml_document::_move(xml_document& rhs) PUGIXML_NOEXCEPT_IF_NOT_COMPACT
{
impl::xml_document_struct* doc = static_cast<impl::xml_document_struct*>(_root);
impl::xml_document_struct* other = static_cast<impl::xml_document_struct*>(rhs._root);
// save first child pointer for later; this needs hash access
xml_node_struct* other_first_child = other->first_child;
#ifdef PUGIXML_COMPACT
// reserve space for the hash table up front; this is the only operation that can fail
// if it does, we have no choice but to throw (if we have exceptions)
if (other_first_child)
{
size_t other_children = 0;
for (xml_node_struct* node = other_first_child; node; node = node->next_sibling)
other_children++;
// in compact mode, each pointer assignment could result in a hash table request
// during move, we have to relocate document first_child and parents of all children
// normally there's just one child and its parent has a pointerless encoding but
// we assume the worst here
if (!other->_hash->reserve(other_children + 1))
{
#ifdef PUGIXML_NO_EXCEPTIONS
return;
#else
throw std::bad_alloc();
#endif
}
}
#endif
// move allocation state
doc->_root = other->_root;
doc->_busy_size = other->_busy_size;
// move buffer state
doc->buffer = other->buffer;
doc->extra_buffers = other->extra_buffers;
_buffer = rhs._buffer;
#ifdef PUGIXML_COMPACT
// move compact hash; note that the hash table can have pointers to other but they will be "inactive", similarly to nodes removed with remove_child
doc->hash = other->hash;
doc->_hash = &doc->hash;
// make sure we don't access other hash up until the end when we reinitialize other document
other->_hash = 0;
#endif
// move page structure
impl::xml_memory_page* doc_page = PUGI__GETPAGE(doc);
assert(doc_page && !doc_page->prev && !doc_page->next);
impl::xml_memory_page* other_page = PUGI__GETPAGE(other);
assert(other_page && !other_page->prev);
// relink pages since root page is embedded into xml_document
if (impl::xml_memory_page* page = other_page->next)
{
assert(page->prev == other_page);
page->prev = doc_page;
doc_page->next = page;
other_page->next = 0;
}
// make sure pages point to the correct document state
for (impl::xml_memory_page* page = doc_page->next; page; page = page->next)
{
assert(page->allocator == other);
page->allocator = doc;
#ifdef PUGIXML_COMPACT
// this automatically migrates most children between documents and prevents ->parent assignment from allocating
if (page->compact_shared_parent == other)
page->compact_shared_parent = doc;
#endif
}
// move tree structure
assert(!doc->first_child);
doc->first_child = other_first_child;
for (xml_node_struct* node = other_first_child; node; node = node->next_sibling)
{
#ifdef PUGIXML_COMPACT
// most children will have migrated when we reassigned compact_shared_parent
assert(node->parent == other || node->parent == doc);
node->parent = doc;
#else
assert(node->parent == other);
node->parent = doc;
#endif
}
// reset other document
new (other) impl::xml_document_struct(PUGI__GETPAGE(other));
rhs._buffer = 0;
}
#endif
#ifndef PUGIXML_NO_STL
PUGI__FN xml_parse_result xml_document::load(std::basic_istream<char, std::char_traits<char> >& stream, unsigned int options, xml_encoding encoding)
{
reset();
return impl::load_stream_impl(static_cast<impl::xml_document_struct*>(_root), stream, options, encoding, &_buffer);
}
PUGI__FN xml_parse_result xml_document::load(std::basic_istream<wchar_t, std::char_traits<wchar_t> >& stream, unsigned int options)
{
reset();
return impl::load_stream_impl(static_cast<impl::xml_document_struct*>(_root), stream, options, encoding_wchar, &_buffer);
}
#endif
PUGI__FN xml_parse_result xml_document::load_string(const char_t* contents, unsigned int options)
{
// Force native encoding (skip autodetection)
#ifdef PUGIXML_WCHAR_MODE
xml_encoding encoding = encoding_wchar;
#else
xml_encoding encoding = encoding_utf8;
#endif
return load_buffer(contents, impl::strlength(contents) * sizeof(char_t), options, encoding);
}
PUGI__FN xml_parse_result xml_document::load(const char_t* contents, unsigned int options)
{
return load_string(contents, options);
}
PUGI__FN xml_parse_result xml_document::load_file(const char* path_, unsigned int options, xml_encoding encoding)
{
reset();
using impl::auto_deleter; // MSVC7 workaround
auto_deleter<FILE> file(fopen(path_, "rb"), impl::close_file);
return impl::load_file_impl(static_cast<impl::xml_document_struct*>(_root), file.data, options, encoding, &_buffer);
}
PUGI__FN xml_parse_result xml_document::load_file(const wchar_t* path_, unsigned int options, xml_encoding encoding)
{
reset();
using impl::auto_deleter; // MSVC7 workaround
auto_deleter<FILE> file(impl::open_file_wide(path_, L"rb"), impl::close_file);
return impl::load_file_impl(static_cast<impl::xml_document_struct*>(_root), file.data, options, encoding, &_buffer);
}
PUGI__FN xml_parse_result xml_document::load_buffer(const void* contents, size_t size, unsigned int options, xml_encoding encoding)
{
reset();
return impl::load_buffer_impl(static_cast<impl::xml_document_struct*>(_root), _root, const_cast<void*>(contents), size, options, encoding, false, false, &_buffer);
}
PUGI__FN xml_parse_result xml_document::load_buffer_inplace(void* contents, size_t size, unsigned int options, xml_encoding encoding)
{
reset();
return impl::load_buffer_impl(static_cast<impl::xml_document_struct*>(_root), _root, contents, size, options, encoding, true, false, &_buffer);
}
PUGI__FN xml_parse_result xml_document::load_buffer_inplace_own(void* contents, size_t size, unsigned int options, xml_encoding encoding)
{
reset();
return impl::load_buffer_impl(static_cast<impl::xml_document_struct*>(_root), _root, contents, size, options, encoding, true, true, &_buffer);
}
PUGI__FN void xml_document::save(xml_writer& writer, const char_t* indent, unsigned int flags, xml_encoding encoding) const
{
impl::xml_buffered_writer buffered_writer(writer, encoding);
if ((flags & format_write_bom) && encoding != encoding_latin1)
{
// BOM always represents the codepoint U+FEFF, so just write it in native encoding
#ifdef PUGIXML_WCHAR_MODE
unsigned int bom = 0xfeff;
buffered_writer.write(static_cast<wchar_t>(bom));
#else
buffered_writer.write('\xef', '\xbb', '\xbf');
#endif
}
if (!(flags & format_no_declaration) && !impl::has_declaration(_root))
{
buffered_writer.write_string(PUGIXML_TEXT("<?xml version=\"1.0\""));
if (encoding == encoding_latin1) buffered_writer.write_string(PUGIXML_TEXT(" encoding=\"ISO-8859-1\""));
buffered_writer.write('?', '>');
if (!(flags & format_raw)) buffered_writer.write('\n');
}
impl::node_output(buffered_writer, _root, indent, flags, 0);
buffered_writer.flush();
}
#ifndef PUGIXML_NO_STL
PUGI__FN void xml_document::save(std::basic_ostream<char, std::char_traits<char> >& stream, const char_t* indent, unsigned int flags, xml_encoding encoding) const
{
xml_writer_stream writer(stream);
save(writer, indent, flags, encoding);
}
PUGI__FN void xml_document::save(std::basic_ostream<wchar_t, std::char_traits<wchar_t> >& stream, const char_t* indent, unsigned int flags) const
{
xml_writer_stream writer(stream);
save(writer, indent, flags, encoding_wchar);
}
#endif
PUGI__FN bool xml_document::save_file(const char* path_, const char_t* indent, unsigned int flags, xml_encoding encoding) const
{
using impl::auto_deleter; // MSVC7 workaround
auto_deleter<FILE> file(fopen(path_, (flags & format_save_file_text) ? "w" : "wb"), impl::close_file);
return impl::save_file_impl(*this, file.data, indent, flags, encoding);
}
PUGI__FN bool xml_document::save_file(const wchar_t* path_, const char_t* indent, unsigned int flags, xml_encoding encoding) const
{
using impl::auto_deleter; // MSVC7 workaround
auto_deleter<FILE> file(impl::open_file_wide(path_, (flags & format_save_file_text) ? L"w" : L"wb"), impl::close_file);
return impl::save_file_impl(*this, file.data, indent, flags, encoding);
}
PUGI__FN xml_node xml_document::document_element() const
{
assert(_root);
for (xml_node_struct* i = _root->first_child; i; i = i->next_sibling)
if (PUGI__NODETYPE(i) == node_element)
return xml_node(i);
return xml_node();
}
#ifndef PUGIXML_NO_STL
PUGI__FN std::string PUGIXML_FUNCTION as_utf8(const wchar_t* str)
{
assert(str);
return impl::as_utf8_impl(str, impl::strlength_wide(str));
}
PUGI__FN std::string PUGIXML_FUNCTION as_utf8(const std::basic_string<wchar_t>& str)
{
return impl::as_utf8_impl(str.c_str(), str.size());
}
PUGI__FN std::basic_string<wchar_t> PUGIXML_FUNCTION as_wide(const char* str)
{
assert(str);
return impl::as_wide_impl(str, strlen(str));
}
PUGI__FN std::basic_string<wchar_t> PUGIXML_FUNCTION as_wide(const std::string& str)
{
return impl::as_wide_impl(str.c_str(), str.size());
}
#endif
PUGI__FN void PUGIXML_FUNCTION set_memory_management_functions(allocation_function allocate, deallocation_function deallocate)
{
impl::xml_memory::allocate = allocate;
impl::xml_memory::deallocate = deallocate;
}
PUGI__FN allocation_function PUGIXML_FUNCTION get_memory_allocation_function()
{
return impl::xml_memory::allocate;
}
PUGI__FN deallocation_function PUGIXML_FUNCTION get_memory_deallocation_function()
{
return impl::xml_memory::deallocate;
}
}
#if !defined(PUGIXML_NO_STL) && (defined(_MSC_VER) || defined(__ICC))
namespace std
{
// Workarounds for (non-standard) iterator category detection for older versions (MSVC7/IC8 and earlier)
PUGI__FN std::bidirectional_iterator_tag _Iter_cat(const pugi::xml_node_iterator&)
{
return std::bidirectional_iterator_tag();
}
PUGI__FN std::bidirectional_iterator_tag _Iter_cat(const pugi::xml_attribute_iterator&)
{
return std::bidirectional_iterator_tag();
}
PUGI__FN std::bidirectional_iterator_tag _Iter_cat(const pugi::xml_named_node_iterator&)
{
return std::bidirectional_iterator_tag();
}
}
#endif
#if !defined(PUGIXML_NO_STL) && defined(__SUNPRO_CC)
namespace std
{
// Workarounds for (non-standard) iterator category detection
PUGI__FN std::bidirectional_iterator_tag __iterator_category(const pugi::xml_node_iterator&)
{
return std::bidirectional_iterator_tag();
}
PUGI__FN std::bidirectional_iterator_tag __iterator_category(const pugi::xml_attribute_iterator&)
{
return std::bidirectional_iterator_tag();
}
PUGI__FN std::bidirectional_iterator_tag __iterator_category(const pugi::xml_named_node_iterator&)
{
return std::bidirectional_iterator_tag();
}
}
#endif
#ifndef PUGIXML_NO_XPATH
// STL replacements
PUGI__NS_BEGIN
struct equal_to
{
template <typename T> bool operator()(const T& lhs, const T& rhs) const
{
return lhs == rhs;
}
};
struct not_equal_to
{
template <typename T> bool operator()(const T& lhs, const T& rhs) const
{
return lhs != rhs;
}
};
struct less
{
template <typename T> bool operator()(const T& lhs, const T& rhs) const
{
return lhs < rhs;
}
};
struct less_equal
{
template <typename T> bool operator()(const T& lhs, const T& rhs) const
{
return lhs <= rhs;
}
};
template <typename T> inline void swap(T& lhs, T& rhs)
{
T temp = lhs;
lhs = rhs;
rhs = temp;
}
template <typename I, typename Pred> PUGI__FN I min_element(I begin, I end, const Pred& pred)
{
I result = begin;
for (I it = begin + 1; it != end; ++it)
if (pred(*it, *result))
result = it;
return result;
}
template <typename I> PUGI__FN void reverse(I begin, I end)
{
while (end - begin > 1)
swap(*begin++, *--end);
}
template <typename I> PUGI__FN I unique(I begin, I end)
{
// fast skip head
while (end - begin > 1 && *begin != *(begin + 1))
begin++;
if (begin == end)
return begin;
// last written element
I write = begin++;
// merge unique elements
while (begin != end)
{
if (*begin != *write)
*++write = *begin++;
else
begin++;
}
// past-the-end (write points to live element)
return write + 1;
}
template <typename T, typename Pred> PUGI__FN void insertion_sort(T* begin, T* end, const Pred& pred)
{
if (begin == end)
return;
for (T* it = begin + 1; it != end; ++it)
{
T val = *it;
T* hole = it;
// move hole backwards
while (hole > begin && pred(val, *(hole - 1)))
{
*hole = *(hole - 1);
hole--;
}
// fill hole with element
*hole = val;
}
}
template <typename I, typename Pred> inline I median3(I first, I middle, I last, const Pred& pred)
{
if (pred(*middle, *first))
swap(middle, first);
if (pred(*last, *middle))
swap(last, middle);
if (pred(*middle, *first))
swap(middle, first);
return middle;
}
template <typename T, typename Pred> PUGI__FN void partition3(T* begin, T* end, T pivot, const Pred& pred, T** out_eqbeg, T** out_eqend)
{
// invariant: array is split into 4 groups: = < ? > (each variable denotes the boundary between the groups)
T* eq = begin;
T* lt = begin;
T* gt = end;
while (lt < gt)
{
if (pred(*lt, pivot))
lt++;
else if (*lt == pivot)
swap(*eq++, *lt++);
else
swap(*lt, *--gt);
}
// we now have just 4 groups: = < >; move equal elements to the middle
T* eqbeg = gt;
for (T* it = begin; it != eq; ++it)
swap(*it, *--eqbeg);
*out_eqbeg = eqbeg;
*out_eqend = gt;
}
template <typename I, typename Pred> PUGI__FN void sort(I begin, I end, const Pred& pred)
{
// sort large chunks
while (end - begin > 16)
{
// find median element
I middle = begin + (end - begin) / 2;
I median = median3(begin, middle, end - 1, pred);
// partition in three chunks (< = >)
I eqbeg, eqend;
partition3(begin, end, *median, pred, &eqbeg, &eqend);
// loop on larger half
if (eqbeg - begin > end - eqend)
{
sort(eqend, end, pred);
end = eqbeg;
}
else
{
sort(begin, eqbeg, pred);
begin = eqend;
}
}
// insertion sort small chunk
insertion_sort(begin, end, pred);
}
PUGI__FN bool hash_insert(const void** table, size_t size, const void* key)
{
assert(key);
unsigned int h = static_cast<unsigned int>(reinterpret_cast<uintptr_t>(key));
// MurmurHash3 32-bit finalizer
h ^= h >> 16;
h *= 0x85ebca6bu;
h ^= h >> 13;
h *= 0xc2b2ae35u;
h ^= h >> 16;
size_t hashmod = size - 1;
size_t bucket = h & hashmod;
for (size_t probe = 0; probe <= hashmod; ++probe)
{
if (table[bucket] == 0)
{
table[bucket] = key;
return true;
}
if (table[bucket] == key)
return false;
// hash collision, quadratic probing
bucket = (bucket + probe + 1) & hashmod;
}
assert(false && "Hash table is full"); // unreachable
return false;
}
PUGI__NS_END
// Allocator used for AST and evaluation stacks
PUGI__NS_BEGIN
static const size_t xpath_memory_page_size =
#ifdef PUGIXML_MEMORY_XPATH_PAGE_SIZE
PUGIXML_MEMORY_XPATH_PAGE_SIZE
#else
4096
#endif
;
static const uintptr_t xpath_memory_block_alignment = sizeof(double) > sizeof(void*) ? sizeof(double) : sizeof(void*);
struct xpath_memory_block
{
xpath_memory_block* next;
size_t capacity;
union
{
char data[xpath_memory_page_size];
double alignment;
};
};
struct xpath_allocator
{
xpath_memory_block* _root;
size_t _root_size;
bool* _error;
xpath_allocator(xpath_memory_block* root, bool* error = 0): _root(root), _root_size(0), _error(error)
{
}
void* allocate(size_t size)
{
// round size up to block alignment boundary
size = (size + xpath_memory_block_alignment - 1) & ~(xpath_memory_block_alignment - 1);
if (_root_size + size <= _root->capacity)
{
void* buf = &_root->data[0] + _root_size;
_root_size += size;
return buf;
}
else
{
// make sure we have at least 1/4th of the page free after allocation to satisfy subsequent allocation requests
size_t block_capacity_base = sizeof(_root->data);
size_t block_capacity_req = size + block_capacity_base / 4;
size_t block_capacity = (block_capacity_base > block_capacity_req) ? block_capacity_base : block_capacity_req;
size_t block_size = block_capacity + offsetof(xpath_memory_block, data);
xpath_memory_block* block = static_cast<xpath_memory_block*>(xml_memory::allocate(block_size));
if (!block)
{
if (_error) *_error = true;
return 0;
}
block->next = _root;
block->capacity = block_capacity;
_root = block;
_root_size = size;
return block->data;
}
}
void* reallocate(void* ptr, size_t old_size, size_t new_size)
{
// round size up to block alignment boundary
old_size = (old_size + xpath_memory_block_alignment - 1) & ~(xpath_memory_block_alignment - 1);
new_size = (new_size + xpath_memory_block_alignment - 1) & ~(xpath_memory_block_alignment - 1);
// we can only reallocate the last object
assert(ptr == 0 || static_cast<char*>(ptr) + old_size == &_root->data[0] + _root_size);
// try to reallocate the object inplace
if (ptr && _root_size - old_size + new_size <= _root->capacity)
{
_root_size = _root_size - old_size + new_size;
return ptr;
}
// allocate a new block
void* result = allocate(new_size);
if (!result) return 0;
// we have a new block
if (ptr)
{
// copy old data (we only support growing)
assert(new_size >= old_size);
memcpy(result, ptr, old_size);
// free the previous page if it had no other objects
assert(_root->data == result);
assert(_root->next);
if (_root->next->data == ptr)
{
// deallocate the whole page, unless it was the first one
xpath_memory_block* next = _root->next->next;
if (next)
{
xml_memory::deallocate(_root->next);
_root->next = next;
}
}
}
return result;
}
void revert(const xpath_allocator& state)
{
// free all new pages
xpath_memory_block* cur = _root;
while (cur != state._root)
{
xpath_memory_block* next = cur->next;
xml_memory::deallocate(cur);
cur = next;
}
// restore state
_root = state._root;
_root_size = state._root_size;
}
void release()
{
xpath_memory_block* cur = _root;
assert(cur);
while (cur->next)
{
xpath_memory_block* next = cur->next;
xml_memory::deallocate(cur);
cur = next;
}
}
};
struct xpath_allocator_capture
{
xpath_allocator_capture(xpath_allocator* alloc): _target(alloc), _state(*alloc)
{
}
~xpath_allocator_capture()
{
_target->revert(_state);
}
xpath_allocator* _target;
xpath_allocator _state;
};
struct xpath_stack
{
xpath_allocator* result;
xpath_allocator* temp;
};
struct xpath_stack_data
{
xpath_memory_block blocks[2];
xpath_allocator result;
xpath_allocator temp;
xpath_stack stack;
bool oom;
xpath_stack_data(): result(blocks + 0, &oom), temp(blocks + 1, &oom), oom(false)
{
blocks[0].next = blocks[1].next = 0;
blocks[0].capacity = blocks[1].capacity = sizeof(blocks[0].data);
stack.result = &result;
stack.temp = &temp;
}
~xpath_stack_data()
{
result.release();
temp.release();
}
};
PUGI__NS_END
// String class
PUGI__NS_BEGIN
class xpath_string
{
const char_t* _buffer;
bool _uses_heap;
size_t _length_heap;
static char_t* duplicate_string(const char_t* string, size_t length, xpath_allocator* alloc)
{
char_t* result = static_cast<char_t*>(alloc->allocate((length + 1) * sizeof(char_t)));
if (!result) return 0;
memcpy(result, string, length * sizeof(char_t));
result[length] = 0;
return result;
}
xpath_string(const char_t* buffer, bool uses_heap_, size_t length_heap): _buffer(buffer), _uses_heap(uses_heap_), _length_heap(length_heap)
{
}
public:
static xpath_string from_const(const char_t* str)
{
return xpath_string(str, false, 0);
}
static xpath_string from_heap_preallocated(const char_t* begin, const char_t* end)
{
assert(begin <= end && *end == 0);
return xpath_string(begin, true, static_cast<size_t>(end - begin));
}
static xpath_string from_heap(const char_t* begin, const char_t* end, xpath_allocator* alloc)
{
assert(begin <= end);
if (begin == end)
return xpath_string();
size_t length = static_cast<size_t>(end - begin);
const char_t* data = duplicate_string(begin, length, alloc);
return data ? xpath_string(data, true, length) : xpath_string();
}
xpath_string(): _buffer(PUGIXML_TEXT("")), _uses_heap(false), _length_heap(0)
{
}
void append(const xpath_string& o, xpath_allocator* alloc)
{
// skip empty sources
if (!*o._buffer) return;
// fast append for constant empty target and constant source
if (!*_buffer && !_uses_heap && !o._uses_heap)
{
_buffer = o._buffer;
}
else
{
// need to make heap copy
size_t target_length = length();
size_t source_length = o.length();
size_t result_length = target_length + source_length;
// allocate new buffer
char_t* result = static_cast<char_t*>(alloc->reallocate(_uses_heap ? const_cast<char_t*>(_buffer) : 0, (target_length + 1) * sizeof(char_t), (result_length + 1) * sizeof(char_t)));
if (!result) return;
// append first string to the new buffer in case there was no reallocation
if (!_uses_heap) memcpy(result, _buffer, target_length * sizeof(char_t));
// append second string to the new buffer
memcpy(result + target_length, o._buffer, source_length * sizeof(char_t));
result[result_length] = 0;
// finalize
_buffer = result;
_uses_heap = true;
_length_heap = result_length;
}
}
const char_t* c_str() const
{
return _buffer;
}
size_t length() const
{
return _uses_heap ? _length_heap : strlength(_buffer);
}
char_t* data(xpath_allocator* alloc)
{
// make private heap copy
if (!_uses_heap)
{
size_t length_ = strlength(_buffer);
const char_t* data_ = duplicate_string(_buffer, length_, alloc);
if (!data_) return 0;
_buffer = data_;
_uses_heap = true;
_length_heap = length_;
}
return const_cast<char_t*>(_buffer);
}
bool empty() const
{
return *_buffer == 0;
}
bool operator==(const xpath_string& o) const
{
return strequal(_buffer, o._buffer);
}
bool operator!=(const xpath_string& o) const
{
return !strequal(_buffer, o._buffer);
}
bool uses_heap() const
{
return _uses_heap;
}
};
PUGI__NS_END
PUGI__NS_BEGIN
PUGI__FN bool starts_with(const char_t* string, const char_t* pattern)
{
while (*pattern && *string == *pattern)
{
string++;
pattern++;
}
return *pattern == 0;
}
PUGI__FN const char_t* find_char(const char_t* s, char_t c)
{
#ifdef PUGIXML_WCHAR_MODE
return wcschr(s, c);
#else
return strchr(s, c);
#endif
}
PUGI__FN const char_t* find_substring(const char_t* s, const char_t* p)
{
#ifdef PUGIXML_WCHAR_MODE
// MSVC6 wcsstr bug workaround (if s is empty it always returns 0)
return (*p == 0) ? s : wcsstr(s, p);
#else
return strstr(s, p);
#endif
}
// Converts symbol to lower case, if it is an ASCII one
PUGI__FN char_t tolower_ascii(char_t ch)
{
return static_cast<unsigned int>(ch - 'A') < 26 ? static_cast<char_t>(ch | ' ') : ch;
}
PUGI__FN xpath_string string_value(const xpath_node& na, xpath_allocator* alloc)
{
if (na.attribute())
return xpath_string::from_const(na.attribute().value());
else
{
xml_node n = na.node();
switch (n.type())
{
case node_pcdata:
case node_cdata:
case node_comment:
case node_pi:
return xpath_string::from_const(n.value());
case node_document:
case node_element:
{
xpath_string result;
// element nodes can have value if parse_embed_pcdata was used
if (n.value()[0])
result.append(xpath_string::from_const(n.value()), alloc);
xml_node cur = n.first_child();
while (cur && cur != n)
{
if (cur.type() == node_pcdata || cur.type() == node_cdata)
result.append(xpath_string::from_const(cur.value()), alloc);
if (cur.first_child())
cur = cur.first_child();
else if (cur.next_sibling())
cur = cur.next_sibling();
else
{
while (!cur.next_sibling() && cur != n)
cur = cur.parent();
if (cur != n) cur = cur.next_sibling();
}
}
return result;
}
default:
return xpath_string();
}
}
}
PUGI__FN bool node_is_before_sibling(xml_node_struct* ln, xml_node_struct* rn)
{
assert(ln->parent == rn->parent);
// there is no common ancestor (the shared parent is null), nodes are from different documents
if (!ln->parent) return ln < rn;
// determine sibling order
xml_node_struct* ls = ln;
xml_node_struct* rs = rn;
while (ls && rs)
{
if (ls == rn) return true;
if (rs == ln) return false;
ls = ls->next_sibling;
rs = rs->next_sibling;
}
// if rn sibling chain ended ln must be before rn
return !rs;
}
PUGI__FN bool node_is_before(xml_node_struct* ln, xml_node_struct* rn)
{
// find common ancestor at the same depth, if any
xml_node_struct* lp = ln;
xml_node_struct* rp = rn;
while (lp && rp && lp->parent != rp->parent)
{
lp = lp->parent;
rp = rp->parent;
}
// parents are the same!
if (lp && rp) return node_is_before_sibling(lp, rp);
// nodes are at different depths, need to normalize heights
bool left_higher = !lp;
while (lp)
{
lp = lp->parent;
ln = ln->parent;
}
while (rp)
{
rp = rp->parent;
rn = rn->parent;
}
// one node is the ancestor of the other
if (ln == rn) return left_higher;
// find common ancestor... again
while (ln->parent != rn->parent)
{
ln = ln->parent;
rn = rn->parent;
}
return node_is_before_sibling(ln, rn);
}
PUGI__FN bool node_is_ancestor(xml_node_struct* parent, xml_node_struct* node)
{
while (node && node != parent) node = node->parent;
return parent && node == parent;
}
PUGI__FN const void* document_buffer_order(const xpath_node& xnode)
{
xml_node_struct* node = xnode.node().internal_object();
if (node)
{
if ((get_document(node).header & xml_memory_page_contents_shared_mask) == 0)
{
if (node->name && (node->header & impl::xml_memory_page_name_allocated_or_shared_mask) == 0) return node->name;
if (node->value && (node->header & impl::xml_memory_page_value_allocated_or_shared_mask) == 0) return node->value;
}
return 0;
}
xml_attribute_struct* attr = xnode.attribute().internal_object();
if (attr)
{
if ((get_document(attr).header & xml_memory_page_contents_shared_mask) == 0)
{
if ((attr->header & impl::xml_memory_page_name_allocated_or_shared_mask) == 0) return attr->name;
if ((attr->header & impl::xml_memory_page_value_allocated_or_shared_mask) == 0) return attr->value;
}
return 0;
}
return 0;
}
struct document_order_comparator
{
bool operator()(const xpath_node& lhs, const xpath_node& rhs) const
{
// optimized document order based check
const void* lo = document_buffer_order(lhs);
const void* ro = document_buffer_order(rhs);
if (lo && ro) return lo < ro;
// slow comparison
xml_node ln = lhs.node(), rn = rhs.node();
// compare attributes
if (lhs.attribute() && rhs.attribute())
{
// shared parent
if (lhs.parent() == rhs.parent())
{
// determine sibling order
for (xml_attribute a = lhs.attribute(); a; a = a.next_attribute())
if (a == rhs.attribute())
return true;
return false;
}
// compare attribute parents
ln = lhs.parent();
rn = rhs.parent();
}
else if (lhs.attribute())
{
// attributes go after the parent element
if (lhs.parent() == rhs.node()) return false;
ln = lhs.parent();
}
else if (rhs.attribute())
{
// attributes go after the parent element
if (rhs.parent() == lhs.node()) return true;
rn = rhs.parent();
}
if (ln == rn) return false;
if (!ln || !rn) return ln < rn;
return node_is_before(ln.internal_object(), rn.internal_object());
}
};
PUGI__FN double gen_nan()
{
#if defined(__STDC_IEC_559__) || ((FLT_RADIX - 0 == 2) && (FLT_MAX_EXP - 0 == 128) && (FLT_MANT_DIG - 0 == 24))
PUGI__STATIC_ASSERT(sizeof(float) == sizeof(uint32_t));
typedef uint32_t UI; // BCC5 workaround
union { float f; UI i; } u;
u.i = 0x7fc00000;
return double(u.f);
#else
// fallback
const volatile double zero = 0.0;
return zero / zero;
#endif
}
PUGI__FN bool is_nan(double value)
{
#if defined(PUGI__MSVC_CRT_VERSION) || defined(__BORLANDC__)
return !!_isnan(value);
#elif defined(fpclassify) && defined(FP_NAN)
return fpclassify(value) == FP_NAN;
#else
// fallback
const volatile double v = value;
return v != v;
#endif
}
PUGI__FN const char_t* convert_number_to_string_special(double value)
{
#if defined(PUGI__MSVC_CRT_VERSION) || defined(__BORLANDC__)
if (_finite(value)) return (value == 0) ? PUGIXML_TEXT("0") : 0;
if (_isnan(value)) return PUGIXML_TEXT("NaN");
return value > 0 ? PUGIXML_TEXT("Infinity") : PUGIXML_TEXT("-Infinity");
#elif defined(fpclassify) && defined(FP_NAN) && defined(FP_INFINITE) && defined(FP_ZERO)
switch (fpclassify(value))
{
case FP_NAN:
return PUGIXML_TEXT("NaN");
case FP_INFINITE:
return value > 0 ? PUGIXML_TEXT("Infinity") : PUGIXML_TEXT("-Infinity");
case FP_ZERO:
return PUGIXML_TEXT("0");
default:
return 0;
}
#else
// fallback
const volatile double v = value;
if (v == 0) return PUGIXML_TEXT("0");
if (v != v) return PUGIXML_TEXT("NaN");
if (v * 2 == v) return value > 0 ? PUGIXML_TEXT("Infinity") : PUGIXML_TEXT("-Infinity");
return 0;
#endif
}
PUGI__FN bool convert_number_to_boolean(double value)
{
return (value != 0 && !is_nan(value));
}
PUGI__FN void truncate_zeros(char* begin, char* end)
{
while (begin != end && end[-1] == '0') end--;
*end = 0;
}
// gets mantissa digits in the form of 0.xxxxx with 0. implied and the exponent
#if defined(PUGI__MSVC_CRT_VERSION) && PUGI__MSVC_CRT_VERSION >= 1400 && !defined(_WIN32_WCE)
PUGI__FN void convert_number_to_mantissa_exponent(double value, char (&buffer)[32], char** out_mantissa, int* out_exponent)
{
// get base values
int sign, exponent;
_ecvt_s(buffer, sizeof(buffer), value, DBL_DIG + 1, &exponent, &sign);
// truncate redundant zeros
truncate_zeros(buffer, buffer + strlen(buffer));
// fill results
*out_mantissa = buffer;
*out_exponent = exponent;
}
#else
PUGI__FN void convert_number_to_mantissa_exponent(double value, char (&buffer)[32], char** out_mantissa, int* out_exponent)
{
// get a scientific notation value with IEEE DBL_DIG decimals
PUGI__SNPRINTF(buffer, "%.*e", DBL_DIG, value);
// get the exponent (possibly negative)
char* exponent_string = strchr(buffer, 'e');
assert(exponent_string);
int exponent = atoi(exponent_string + 1);
// extract mantissa string: skip sign
char* mantissa = buffer[0] == '-' ? buffer + 1 : buffer;
assert(mantissa[0] != '0' && mantissa[1] == '.');
// divide mantissa by 10 to eliminate integer part
mantissa[1] = mantissa[0];
mantissa++;
exponent++;
// remove extra mantissa digits and zero-terminate mantissa
truncate_zeros(mantissa, exponent_string);
// fill results
*out_mantissa = mantissa;
*out_exponent = exponent;
}
#endif
PUGI__FN xpath_string convert_number_to_string(double value, xpath_allocator* alloc)
{
// try special number conversion
const char_t* special = convert_number_to_string_special(value);
if (special) return xpath_string::from_const(special);
// get mantissa + exponent form
char mantissa_buffer[32];
char* mantissa;
int exponent;
convert_number_to_mantissa_exponent(value, mantissa_buffer, &mantissa, &exponent);
// allocate a buffer of suitable length for the number
size_t result_size = strlen(mantissa_buffer) + (exponent > 0 ? exponent : -exponent) + 4;
char_t* result = static_cast<char_t*>(alloc->allocate(sizeof(char_t) * result_size));
if (!result) return xpath_string();
// make the number!
char_t* s = result;
// sign
if (value < 0) *s++ = '-';
// integer part
if (exponent <= 0)
{
*s++ = '0';
}
else
{
while (exponent > 0)
{
assert(*mantissa == 0 || static_cast<unsigned int>(*mantissa - '0') <= 9);
*s++ = *mantissa ? *mantissa++ : '0';
exponent--;
}
}
// fractional part
if (*mantissa)
{
// decimal point
*s++ = '.';
// extra zeroes from negative exponent
while (exponent < 0)
{
*s++ = '0';
exponent++;
}
// extra mantissa digits
while (*mantissa)
{
assert(static_cast<unsigned int>(*mantissa - '0') <= 9);
*s++ = *mantissa++;
}
}
// zero-terminate
assert(s < result + result_size);
*s = 0;
return xpath_string::from_heap_preallocated(result, s);
}
PUGI__FN bool check_string_to_number_format(const char_t* string)
{
// parse leading whitespace
while (PUGI__IS_CHARTYPE(*string, ct_space)) ++string;
// parse sign
if (*string == '-') ++string;
if (!*string) return false;
// if there is no integer part, there should be a decimal part with at least one digit
if (!PUGI__IS_CHARTYPEX(string[0], ctx_digit) && (string[0] != '.' || !PUGI__IS_CHARTYPEX(string[1], ctx_digit))) return false;
// parse integer part
while (PUGI__IS_CHARTYPEX(*string, ctx_digit)) ++string;
// parse decimal part
if (*string == '.')
{
++string;
while (PUGI__IS_CHARTYPEX(*string, ctx_digit)) ++string;
}
// parse trailing whitespace
while (PUGI__IS_CHARTYPE(*string, ct_space)) ++string;
return *string == 0;
}
PUGI__FN double convert_string_to_number(const char_t* string)
{
// check string format
if (!check_string_to_number_format(string)) return gen_nan();
// parse string
#ifdef PUGIXML_WCHAR_MODE
return wcstod(string, 0);
#else
return strtod(string, 0);
#endif
}
PUGI__FN bool convert_string_to_number_scratch(char_t (&buffer)[32], const char_t* begin, const char_t* end, double* out_result)
{
size_t length = static_cast<size_t>(end - begin);
char_t* scratch = buffer;
if (length >= sizeof(buffer) / sizeof(buffer[0]))
{
// need to make dummy on-heap copy
scratch = static_cast<char_t*>(xml_memory::allocate((length + 1) * sizeof(char_t)));
if (!scratch) return false;
}
// copy string to zero-terminated buffer and perform conversion
memcpy(scratch, begin, length * sizeof(char_t));
scratch[length] = 0;
*out_result = convert_string_to_number(scratch);
// free dummy buffer
if (scratch != buffer) xml_memory::deallocate(scratch);
return true;
}
PUGI__FN double round_nearest(double value)
{
return floor(value + 0.5);
}
PUGI__FN double round_nearest_nzero(double value)
{
// same as round_nearest, but returns -0 for [-0.5, -0]
// ceil is used to differentiate between +0 and -0 (we return -0 for [-0.5, -0] and +0 for +0)
return (value >= -0.5 && value <= 0) ? ceil(value) : floor(value + 0.5);
}
PUGI__FN const char_t* qualified_name(const xpath_node& node)
{
return node.attribute() ? node.attribute().name() : node.node().name();
}
PUGI__FN const char_t* local_name(const xpath_node& node)
{
const char_t* name = qualified_name(node);
const char_t* p = find_char(name, ':');
return p ? p + 1 : name;
}
struct namespace_uri_predicate
{
const char_t* prefix;
size_t prefix_length;
namespace_uri_predicate(const char_t* name)
{
const char_t* pos = find_char(name, ':');
prefix = pos ? name : 0;
prefix_length = pos ? static_cast<size_t>(pos - name) : 0;
}
bool operator()(xml_attribute a) const
{
const char_t* name = a.name();
if (!starts_with(name, PUGIXML_TEXT("xmlns"))) return false;
return prefix ? name[5] == ':' && strequalrange(name + 6, prefix, prefix_length) : name[5] == 0;
}
};
PUGI__FN const char_t* namespace_uri(xml_node node)
{
namespace_uri_predicate pred = node.name();
xml_node p = node;
while (p)
{
xml_attribute a = p.find_attribute(pred);
if (a) return a.value();
p = p.parent();
}
return PUGIXML_TEXT("");
}
PUGI__FN const char_t* namespace_uri(xml_attribute attr, xml_node parent)
{
namespace_uri_predicate pred = attr.name();
// Default namespace does not apply to attributes
if (!pred.prefix) return PUGIXML_TEXT("");
xml_node p = parent;
while (p)
{
xml_attribute a = p.find_attribute(pred);
if (a) return a.value();
p = p.parent();
}
return PUGIXML_TEXT("");
}
PUGI__FN const char_t* namespace_uri(const xpath_node& node)
{
return node.attribute() ? namespace_uri(node.attribute(), node.parent()) : namespace_uri(node.node());
}
PUGI__FN char_t* normalize_space(char_t* buffer)
{
char_t* write = buffer;
for (char_t* it = buffer; *it; )
{
char_t ch = *it++;
if (PUGI__IS_CHARTYPE(ch, ct_space))
{
// replace whitespace sequence with single space
while (PUGI__IS_CHARTYPE(*it, ct_space)) it++;
// avoid leading spaces
if (write != buffer) *write++ = ' ';
}
else *write++ = ch;
}
// remove trailing space
if (write != buffer && PUGI__IS_CHARTYPE(write[-1], ct_space)) write--;
// zero-terminate
*write = 0;
return write;
}
PUGI__FN char_t* translate(char_t* buffer, const char_t* from, const char_t* to, size_t to_length)
{
char_t* write = buffer;
while (*buffer)
{
PUGI__DMC_VOLATILE char_t ch = *buffer++;
const char_t* pos = find_char(from, ch);
if (!pos)
*write++ = ch; // do not process
else if (static_cast<size_t>(pos - from) < to_length)
*write++ = to[pos - from]; // replace
}
// zero-terminate
*write = 0;
return write;
}
PUGI__FN unsigned char* translate_table_generate(xpath_allocator* alloc, const char_t* from, const char_t* to)
{
unsigned char table[128] = {0};
while (*from)
{
unsigned int fc = static_cast<unsigned int>(*from);
unsigned int tc = static_cast<unsigned int>(*to);
if (fc >= 128 || tc >= 128)
return 0;
// code=128 means "skip character"
if (!table[fc])
table[fc] = static_cast<unsigned char>(tc ? tc : 128);
from++;
if (tc) to++;
}
for (int i = 0; i < 128; ++i)
if (!table[i])
table[i] = static_cast<unsigned char>(i);
void* result = alloc->allocate(sizeof(table));
if (!result) return 0;
memcpy(result, table, sizeof(table));
return static_cast<unsigned char*>(result);
}
PUGI__FN char_t* translate_table(char_t* buffer, const unsigned char* table)
{
char_t* write = buffer;
while (*buffer)
{
char_t ch = *buffer++;
unsigned int index = static_cast<unsigned int>(ch);
if (index < 128)
{
unsigned char code = table[index];
// code=128 means "skip character" (table size is 128 so 128 can be a special value)
// this code skips these characters without extra branches
*write = static_cast<char_t>(code);
write += 1 - (code >> 7);
}
else
{
*write++ = ch;
}
}
// zero-terminate
*write = 0;
return write;
}
inline bool is_xpath_attribute(const char_t* name)
{
return !(starts_with(name, PUGIXML_TEXT("xmlns")) && (name[5] == 0 || name[5] == ':'));
}
struct xpath_variable_boolean: xpath_variable
{
xpath_variable_boolean(): xpath_variable(xpath_type_boolean), value(false)
{
}
bool value;
char_t name[1];
};
struct xpath_variable_number: xpath_variable
{
xpath_variable_number(): xpath_variable(xpath_type_number), value(0)
{
}
double value;
char_t name[1];
};
struct xpath_variable_string: xpath_variable
{
xpath_variable_string(): xpath_variable(xpath_type_string), value(0)
{
}
~xpath_variable_string()
{
if (value) xml_memory::deallocate(value);
}
char_t* value;
char_t name[1];
};
struct xpath_variable_node_set: xpath_variable
{
xpath_variable_node_set(): xpath_variable(xpath_type_node_set)
{
}
xpath_node_set value;
char_t name[1];
};
static const xpath_node_set dummy_node_set;
PUGI__FN PUGI__UNSIGNED_OVERFLOW unsigned int hash_string(const char_t* str)
{
// Jenkins one-at-a-time hash (http://en.wikipedia.org/wiki/Jenkins_hash_function#one-at-a-time)
unsigned int result = 0;
while (*str)
{
result += static_cast<unsigned int>(*str++);
result += result << 10;
result ^= result >> 6;
}
result += result << 3;
result ^= result >> 11;
result += result << 15;
return result;
}
template <typename T> PUGI__FN T* new_xpath_variable(const char_t* name)
{
size_t length = strlength(name);
if (length == 0) return 0; // empty variable names are invalid
// $$ we can't use offsetof(T, name) because T is non-POD, so we just allocate additional length characters
void* memory = xml_memory::allocate(sizeof(T) + length * sizeof(char_t));
if (!memory) return 0;
T* result = new (memory) T();
memcpy(result->name, name, (length + 1) * sizeof(char_t));
return result;
}
PUGI__FN xpath_variable* new_xpath_variable(xpath_value_type type, const char_t* name)
{
switch (type)
{
case xpath_type_node_set:
return new_xpath_variable<xpath_variable_node_set>(name);
case xpath_type_number:
return new_xpath_variable<xpath_variable_number>(name);
case xpath_type_string:
return new_xpath_variable<xpath_variable_string>(name);
case xpath_type_boolean:
return new_xpath_variable<xpath_variable_boolean>(name);
default:
return 0;
}
}
template <typename T> PUGI__FN void delete_xpath_variable(T* var)
{
var->~T();
xml_memory::deallocate(var);
}
PUGI__FN void delete_xpath_variable(xpath_value_type type, xpath_variable* var)
{
switch (type)
{
case xpath_type_node_set:
delete_xpath_variable(static_cast<xpath_variable_node_set*>(var));
break;
case xpath_type_number:
delete_xpath_variable(static_cast<xpath_variable_number*>(var));
break;
case xpath_type_string:
delete_xpath_variable(static_cast<xpath_variable_string*>(var));
break;
case xpath_type_boolean:
delete_xpath_variable(static_cast<xpath_variable_boolean*>(var));
break;
default:
assert(false && "Invalid variable type"); // unreachable
}
}
PUGI__FN bool copy_xpath_variable(xpath_variable* lhs, const xpath_variable* rhs)
{
switch (rhs->type())
{
case xpath_type_node_set:
return lhs->set(static_cast<const xpath_variable_node_set*>(rhs)->value);
case xpath_type_number:
return lhs->set(static_cast<const xpath_variable_number*>(rhs)->value);
case xpath_type_string:
return lhs->set(static_cast<const xpath_variable_string*>(rhs)->value);
case xpath_type_boolean:
return lhs->set(static_cast<const xpath_variable_boolean*>(rhs)->value);
default:
assert(false && "Invalid variable type"); // unreachable
return false;
}
}
PUGI__FN bool get_variable_scratch(char_t (&buffer)[32], xpath_variable_set* set, const char_t* begin, const char_t* end, xpath_variable** out_result)
{
size_t length = static_cast<size_t>(end - begin);
char_t* scratch = buffer;
if (length >= sizeof(buffer) / sizeof(buffer[0]))
{
// need to make dummy on-heap copy
scratch = static_cast<char_t*>(xml_memory::allocate((length + 1) * sizeof(char_t)));
if (!scratch) return false;
}
// copy string to zero-terminated buffer and perform lookup
memcpy(scratch, begin, length * sizeof(char_t));
scratch[length] = 0;
*out_result = set->get(scratch);
// free dummy buffer
if (scratch != buffer) xml_memory::deallocate(scratch);
return true;
}
PUGI__NS_END
// Internal node set class
PUGI__NS_BEGIN
PUGI__FN xpath_node_set::type_t xpath_get_order(const xpath_node* begin, const xpath_node* end)
{
if (end - begin < 2)
return xpath_node_set::type_sorted;
document_order_comparator cmp;
bool first = cmp(begin[0], begin[1]);
for (const xpath_node* it = begin + 1; it + 1 < end; ++it)
if (cmp(it[0], it[1]) != first)
return xpath_node_set::type_unsorted;
return first ? xpath_node_set::type_sorted : xpath_node_set::type_sorted_reverse;
}
PUGI__FN xpath_node_set::type_t xpath_sort(xpath_node* begin, xpath_node* end, xpath_node_set::type_t type, bool rev)
{
xpath_node_set::type_t order = rev ? xpath_node_set::type_sorted_reverse : xpath_node_set::type_sorted;
if (type == xpath_node_set::type_unsorted)
{
xpath_node_set::type_t sorted = xpath_get_order(begin, end);
if (sorted == xpath_node_set::type_unsorted)
{
sort(begin, end, document_order_comparator());
type = xpath_node_set::type_sorted;
}
else
type = sorted;
}
if (type != order) reverse(begin, end);
return order;
}
PUGI__FN xpath_node xpath_first(const xpath_node* begin, const xpath_node* end, xpath_node_set::type_t type)
{
if (begin == end) return xpath_node();
switch (type)
{
case xpath_node_set::type_sorted:
return *begin;
case xpath_node_set::type_sorted_reverse:
return *(end - 1);
case xpath_node_set::type_unsorted:
return *min_element(begin, end, document_order_comparator());
default:
assert(false && "Invalid node set type"); // unreachable
return xpath_node();
}
}
class xpath_node_set_raw
{
xpath_node_set::type_t _type;
xpath_node* _begin;
xpath_node* _end;
xpath_node* _eos;
public:
xpath_node_set_raw(): _type(xpath_node_set::type_unsorted), _begin(0), _end(0), _eos(0)
{
}
xpath_node* begin() const
{
return _begin;
}
xpath_node* end() const
{
return _end;
}
bool empty() const
{
return _begin == _end;
}
size_t size() const
{
return static_cast<size_t>(_end - _begin);
}
xpath_node first() const
{
return xpath_first(_begin, _end, _type);
}
void push_back_grow(const xpath_node& node, xpath_allocator* alloc);
void push_back(const xpath_node& node, xpath_allocator* alloc)
{
if (_end != _eos)
*_end++ = node;
else
push_back_grow(node, alloc);
}
void append(const xpath_node* begin_, const xpath_node* end_, xpath_allocator* alloc)
{
if (begin_ == end_) return;
size_t size_ = static_cast<size_t>(_end - _begin);
size_t capacity = static_cast<size_t>(_eos - _begin);
size_t count = static_cast<size_t>(end_ - begin_);
if (size_ + count > capacity)
{
// reallocate the old array or allocate a new one
xpath_node* data = static_cast<xpath_node*>(alloc->reallocate(_begin, capacity * sizeof(xpath_node), (size_ + count) * sizeof(xpath_node)));
if (!data) return;
// finalize
_begin = data;
_end = data + size_;
_eos = data + size_ + count;
}
memcpy(_end, begin_, count * sizeof(xpath_node));
_end += count;
}
void sort_do()
{
_type = xpath_sort(_begin, _end, _type, false);
}
void truncate(xpath_node* pos)
{
assert(_begin <= pos && pos <= _end);
_end = pos;
}
void remove_duplicates(xpath_allocator* alloc)
{
if (_type == xpath_node_set::type_unsorted && _end - _begin > 2)
{
xpath_allocator_capture cr(alloc);
size_t size_ = static_cast<size_t>(_end - _begin);
size_t hash_size = 1;
while (hash_size < size_ + size_ / 2) hash_size *= 2;
const void** hash_data = static_cast<const void**>(alloc->allocate(hash_size * sizeof(void**)));
if (!hash_data) return;
memset(hash_data, 0, hash_size * sizeof(const void**));
xpath_node* write = _begin;
for (xpath_node* it = _begin; it != _end; ++it)
{
const void* attr = it->attribute().internal_object();
const void* node = it->node().internal_object();
const void* key = attr ? attr : node;
if (key && hash_insert(hash_data, hash_size, key))
{
*write++ = *it;
}
}
_end = write;
}
else
{
_end = unique(_begin, _end);
}
}
xpath_node_set::type_t type() const
{
return _type;
}
void set_type(xpath_node_set::type_t value)
{
_type = value;
}
};
PUGI__FN_NO_INLINE void xpath_node_set_raw::push_back_grow(const xpath_node& node, xpath_allocator* alloc)
{
size_t capacity = static_cast<size_t>(_eos - _begin);
// get new capacity (1.5x rule)
size_t new_capacity = capacity + capacity / 2 + 1;
// reallocate the old array or allocate a new one
xpath_node* data = static_cast<xpath_node*>(alloc->reallocate(_begin, capacity * sizeof(xpath_node), new_capacity * sizeof(xpath_node)));
if (!data) return;
// finalize
_begin = data;
_end = data + capacity;
_eos = data + new_capacity;
// push
*_end++ = node;
}
PUGI__NS_END
PUGI__NS_BEGIN
struct xpath_context
{
xpath_node n;
size_t position, size;
xpath_context(const xpath_node& n_, size_t position_, size_t size_): n(n_), position(position_), size(size_)
{
}
};
enum lexeme_t
{
lex_none = 0,
lex_equal,
lex_not_equal,
lex_less,
lex_greater,
lex_less_or_equal,
lex_greater_or_equal,
lex_plus,
lex_minus,
lex_multiply,
lex_union,
lex_var_ref,
lex_open_brace,
lex_close_brace,
lex_quoted_string,
lex_number,
lex_slash,
lex_double_slash,
lex_open_square_brace,
lex_close_square_brace,
lex_string,
lex_comma,
lex_axis_attribute,
lex_dot,
lex_double_dot,
lex_double_colon,
lex_eof
};
struct xpath_lexer_string
{
const char_t* begin;
const char_t* end;
xpath_lexer_string(): begin(0), end(0)
{
}
bool operator==(const char_t* other) const
{
size_t length = static_cast<size_t>(end - begin);
return strequalrange(other, begin, length);
}
};
class xpath_lexer
{
const char_t* _cur;
const char_t* _cur_lexeme_pos;
xpath_lexer_string _cur_lexeme_contents;
lexeme_t _cur_lexeme;
public:
explicit xpath_lexer(const char_t* query): _cur(query)
{
next();
}
const char_t* state() const
{
return _cur;
}
void next()
{
const char_t* cur = _cur;
while (PUGI__IS_CHARTYPE(*cur, ct_space)) ++cur;
// save lexeme position for error reporting
_cur_lexeme_pos = cur;
switch (*cur)
{
case 0:
_cur_lexeme = lex_eof;
break;
case '>':
if (*(cur+1) == '=')
{
cur += 2;
_cur_lexeme = lex_greater_or_equal;
}
else
{
cur += 1;
_cur_lexeme = lex_greater;
}
break;
case '<':
if (*(cur+1) == '=')
{
cur += 2;
_cur_lexeme = lex_less_or_equal;
}
else
{
cur += 1;
_cur_lexeme = lex_less;
}
break;
case '!':
if (*(cur+1) == '=')
{
cur += 2;
_cur_lexeme = lex_not_equal;
}
else
{
_cur_lexeme = lex_none;
}
break;
case '=':
cur += 1;
_cur_lexeme = lex_equal;
break;
case '+':
cur += 1;
_cur_lexeme = lex_plus;
break;
case '-':
cur += 1;
_cur_lexeme = lex_minus;
break;
case '*':
cur += 1;
_cur_lexeme = lex_multiply;
break;
case '|':
cur += 1;
_cur_lexeme = lex_union;
break;
case '$':
cur += 1;
if (PUGI__IS_CHARTYPEX(*cur, ctx_start_symbol))
{
_cur_lexeme_contents.begin = cur;
while (PUGI__IS_CHARTYPEX(*cur, ctx_symbol)) cur++;
if (cur[0] == ':' && PUGI__IS_CHARTYPEX(cur[1], ctx_symbol)) // qname
{
cur++; // :
while (PUGI__IS_CHARTYPEX(*cur, ctx_symbol)) cur++;
}
_cur_lexeme_contents.end = cur;
_cur_lexeme = lex_var_ref;
}
else
{
_cur_lexeme = lex_none;
}
break;
case '(':
cur += 1;
_cur_lexeme = lex_open_brace;
break;
case ')':
cur += 1;
_cur_lexeme = lex_close_brace;
break;
case '[':
cur += 1;
_cur_lexeme = lex_open_square_brace;
break;
case ']':
cur += 1;
_cur_lexeme = lex_close_square_brace;
break;
case ',':
cur += 1;
_cur_lexeme = lex_comma;
break;
case '/':
if (*(cur+1) == '/')
{
cur += 2;
_cur_lexeme = lex_double_slash;
}
else
{
cur += 1;
_cur_lexeme = lex_slash;
}
break;
case '.':
if (*(cur+1) == '.')
{
cur += 2;
_cur_lexeme = lex_double_dot;
}
else if (PUGI__IS_CHARTYPEX(*(cur+1), ctx_digit))
{
_cur_lexeme_contents.begin = cur; // .
++cur;
while (PUGI__IS_CHARTYPEX(*cur, ctx_digit)) cur++;
_cur_lexeme_contents.end = cur;
_cur_lexeme = lex_number;
}
else
{
cur += 1;
_cur_lexeme = lex_dot;
}
break;
case '@':
cur += 1;
_cur_lexeme = lex_axis_attribute;
break;
case '"':
case '\'':
{
char_t terminator = *cur;
++cur;
_cur_lexeme_contents.begin = cur;
while (*cur && *cur != terminator) cur++;
_cur_lexeme_contents.end = cur;
if (!*cur)
_cur_lexeme = lex_none;
else
{
cur += 1;
_cur_lexeme = lex_quoted_string;
}
break;
}
case ':':
if (*(cur+1) == ':')
{
cur += 2;
_cur_lexeme = lex_double_colon;
}
else
{
_cur_lexeme = lex_none;
}
break;
default:
if (PUGI__IS_CHARTYPEX(*cur, ctx_digit))
{
_cur_lexeme_contents.begin = cur;
while (PUGI__IS_CHARTYPEX(*cur, ctx_digit)) cur++;
if (*cur == '.')
{
cur++;
while (PUGI__IS_CHARTYPEX(*cur, ctx_digit)) cur++;
}
_cur_lexeme_contents.end = cur;
_cur_lexeme = lex_number;
}
else if (PUGI__IS_CHARTYPEX(*cur, ctx_start_symbol))
{
_cur_lexeme_contents.begin = cur;
while (PUGI__IS_CHARTYPEX(*cur, ctx_symbol)) cur++;
if (cur[0] == ':')
{
if (cur[1] == '*') // namespace test ncname:*
{
cur += 2; // :*
}
else if (PUGI__IS_CHARTYPEX(cur[1], ctx_symbol)) // namespace test qname
{
cur++; // :
while (PUGI__IS_CHARTYPEX(*cur, ctx_symbol)) cur++;
}
}
_cur_lexeme_contents.end = cur;
_cur_lexeme = lex_string;
}
else
{
_cur_lexeme = lex_none;
}
}
_cur = cur;
}
lexeme_t current() const
{
return _cur_lexeme;
}
const char_t* current_pos() const
{
return _cur_lexeme_pos;
}
const xpath_lexer_string& contents() const
{
assert(_cur_lexeme == lex_var_ref || _cur_lexeme == lex_number || _cur_lexeme == lex_string || _cur_lexeme == lex_quoted_string);
return _cur_lexeme_contents;
}
};
enum ast_type_t
{
ast_unknown,
ast_op_or, // left or right
ast_op_and, // left and right
ast_op_equal, // left = right
ast_op_not_equal, // left != right
ast_op_less, // left < right
ast_op_greater, // left > right
ast_op_less_or_equal, // left <= right
ast_op_greater_or_equal, // left >= right
ast_op_add, // left + right
ast_op_subtract, // left - right
ast_op_multiply, // left * right
ast_op_divide, // left / right
ast_op_mod, // left % right
ast_op_negate, // left - right
ast_op_union, // left | right
ast_predicate, // apply predicate to set; next points to next predicate
ast_filter, // select * from left where right
ast_string_constant, // string constant
ast_number_constant, // number constant
ast_variable, // variable
ast_func_last, // last()
ast_func_position, // position()
ast_func_count, // count(left)
ast_func_id, // id(left)
ast_func_local_name_0, // local-name()
ast_func_local_name_1, // local-name(left)
ast_func_namespace_uri_0, // namespace-uri()
ast_func_namespace_uri_1, // namespace-uri(left)
ast_func_name_0, // name()
ast_func_name_1, // name(left)
ast_func_string_0, // string()
ast_func_string_1, // string(left)
ast_func_concat, // concat(left, right, siblings)
ast_func_starts_with, // starts_with(left, right)
ast_func_contains, // contains(left, right)
ast_func_substring_before, // substring-before(left, right)
ast_func_substring_after, // substring-after(left, right)
ast_func_substring_2, // substring(left, right)
ast_func_substring_3, // substring(left, right, third)
ast_func_string_length_0, // string-length()
ast_func_string_length_1, // string-length(left)
ast_func_normalize_space_0, // normalize-space()
ast_func_normalize_space_1, // normalize-space(left)
ast_func_translate, // translate(left, right, third)
ast_func_boolean, // boolean(left)
ast_func_not, // not(left)
ast_func_true, // true()
ast_func_false, // false()
ast_func_lang, // lang(left)
ast_func_number_0, // number()
ast_func_number_1, // number(left)
ast_func_sum, // sum(left)
ast_func_floor, // floor(left)
ast_func_ceiling, // ceiling(left)
ast_func_round, // round(left)
ast_step, // process set left with step
ast_step_root, // select root node
ast_opt_translate_table, // translate(left, right, third) where right/third are constants
ast_opt_compare_attribute // @name = 'string'
};
enum axis_t
{
axis_ancestor,
axis_ancestor_or_self,
axis_attribute,
axis_child,
axis_descendant,
axis_descendant_or_self,
axis_following,
axis_following_sibling,
axis_namespace,
axis_parent,
axis_preceding,
axis_preceding_sibling,
axis_self
};
enum nodetest_t
{
nodetest_none,
nodetest_name,
nodetest_type_node,
nodetest_type_comment,
nodetest_type_pi,
nodetest_type_text,
nodetest_pi,
nodetest_all,
nodetest_all_in_namespace
};
enum predicate_t
{
predicate_default,
predicate_posinv,
predicate_constant,
predicate_constant_one
};
enum nodeset_eval_t
{
nodeset_eval_all,
nodeset_eval_any,
nodeset_eval_first
};
template <axis_t N> struct axis_to_type
{
static const axis_t axis;
};
template <axis_t N> const axis_t axis_to_type<N>::axis = N;
class xpath_ast_node
{
private:
// node type
char _type;
char _rettype;
// for ast_step
char _axis;
// for ast_step/ast_predicate/ast_filter
char _test;
// tree node structure
xpath_ast_node* _left;
xpath_ast_node* _right;
xpath_ast_node* _next;
union
{
// value for ast_string_constant
const char_t* string;
// value for ast_number_constant
double number;
// variable for ast_variable
xpath_variable* variable;
// node test for ast_step (node name/namespace/node type/pi target)
const char_t* nodetest;
// table for ast_opt_translate_table
const unsigned char* table;
} _data;
xpath_ast_node(const xpath_ast_node&);
xpath_ast_node& operator=(const xpath_ast_node&);
template <class Comp> static bool compare_eq(xpath_ast_node* lhs, xpath_ast_node* rhs, const xpath_context& c, const xpath_stack& stack, const Comp& comp)
{
xpath_value_type lt = lhs->rettype(), rt = rhs->rettype();
if (lt != xpath_type_node_set && rt != xpath_type_node_set)
{
if (lt == xpath_type_boolean || rt == xpath_type_boolean)
return comp(lhs->eval_boolean(c, stack), rhs->eval_boolean(c, stack));
else if (lt == xpath_type_number || rt == xpath_type_number)
return comp(lhs->eval_number(c, stack), rhs->eval_number(c, stack));
else if (lt == xpath_type_string || rt == xpath_type_string)
{
xpath_allocator_capture cr(stack.result);
xpath_string ls = lhs->eval_string(c, stack);
xpath_string rs = rhs->eval_string(c, stack);
return comp(ls, rs);
}
}
else if (lt == xpath_type_node_set && rt == xpath_type_node_set)
{
xpath_allocator_capture cr(stack.result);
xpath_node_set_raw ls = lhs->eval_node_set(c, stack, nodeset_eval_all);
xpath_node_set_raw rs = rhs->eval_node_set(c, stack, nodeset_eval_all);
for (const xpath_node* li = ls.begin(); li != ls.end(); ++li)
for (const xpath_node* ri = rs.begin(); ri != rs.end(); ++ri)
{
xpath_allocator_capture cri(stack.result);
if (comp(string_value(*li, stack.result), string_value(*ri, stack.result)))
return true;
}
return false;
}
else
{
if (lt == xpath_type_node_set)
{
swap(lhs, rhs);
swap(lt, rt);
}
if (lt == xpath_type_boolean)
return comp(lhs->eval_boolean(c, stack), rhs->eval_boolean(c, stack));
else if (lt == xpath_type_number)
{
xpath_allocator_capture cr(stack.result);
double l = lhs->eval_number(c, stack);
xpath_node_set_raw rs = rhs->eval_node_set(c, stack, nodeset_eval_all);
for (const xpath_node* ri = rs.begin(); ri != rs.end(); ++ri)
{
xpath_allocator_capture cri(stack.result);
if (comp(l, convert_string_to_number(string_value(*ri, stack.result).c_str())))
return true;
}
return false;
}
else if (lt == xpath_type_string)
{
xpath_allocator_capture cr(stack.result);
xpath_string l = lhs->eval_string(c, stack);
xpath_node_set_raw rs = rhs->eval_node_set(c, stack, nodeset_eval_all);
for (const xpath_node* ri = rs.begin(); ri != rs.end(); ++ri)
{
xpath_allocator_capture cri(stack.result);
if (comp(l, string_value(*ri, stack.result)))
return true;
}
return false;
}
}
assert(false && "Wrong types"); // unreachable
return false;
}
static bool eval_once(xpath_node_set::type_t type, nodeset_eval_t eval)
{
return type == xpath_node_set::type_sorted ? eval != nodeset_eval_all : eval == nodeset_eval_any;
}
template <class Comp> static bool compare_rel(xpath_ast_node* lhs, xpath_ast_node* rhs, const xpath_context& c, const xpath_stack& stack, const Comp& comp)
{
xpath_value_type lt = lhs->rettype(), rt = rhs->rettype();
if (lt != xpath_type_node_set && rt != xpath_type_node_set)
return comp(lhs->eval_number(c, stack), rhs->eval_number(c, stack));
else if (lt == xpath_type_node_set && rt == xpath_type_node_set)
{
xpath_allocator_capture cr(stack.result);
xpath_node_set_raw ls = lhs->eval_node_set(c, stack, nodeset_eval_all);
xpath_node_set_raw rs = rhs->eval_node_set(c, stack, nodeset_eval_all);
for (const xpath_node* li = ls.begin(); li != ls.end(); ++li)
{
xpath_allocator_capture cri(stack.result);
double l = convert_string_to_number(string_value(*li, stack.result).c_str());
for (const xpath_node* ri = rs.begin(); ri != rs.end(); ++ri)
{
xpath_allocator_capture crii(stack.result);
if (comp(l, convert_string_to_number(string_value(*ri, stack.result).c_str())))
return true;
}
}
return false;
}
else if (lt != xpath_type_node_set && rt == xpath_type_node_set)
{
xpath_allocator_capture cr(stack.result);
double l = lhs->eval_number(c, stack);
xpath_node_set_raw rs = rhs->eval_node_set(c, stack, nodeset_eval_all);
for (const xpath_node* ri = rs.begin(); ri != rs.end(); ++ri)
{
xpath_allocator_capture cri(stack.result);
if (comp(l, convert_string_to_number(string_value(*ri, stack.result).c_str())))
return true;
}
return false;
}
else if (lt == xpath_type_node_set && rt != xpath_type_node_set)
{
xpath_allocator_capture cr(stack.result);
xpath_node_set_raw ls = lhs->eval_node_set(c, stack, nodeset_eval_all);
double r = rhs->eval_number(c, stack);
for (const xpath_node* li = ls.begin(); li != ls.end(); ++li)
{
xpath_allocator_capture cri(stack.result);
if (comp(convert_string_to_number(string_value(*li, stack.result).c_str()), r))
return true;
}
return false;
}
else
{
assert(false && "Wrong types"); // unreachable
return false;
}
}
static void apply_predicate_boolean(xpath_node_set_raw& ns, size_t first, xpath_ast_node* expr, const xpath_stack& stack, bool once)
{
assert(ns.size() >= first);
assert(expr->rettype() != xpath_type_number);
size_t i = 1;
size_t size = ns.size() - first;
xpath_node* last = ns.begin() + first;
// remove_if... or well, sort of
for (xpath_node* it = last; it != ns.end(); ++it, ++i)
{
xpath_context c(*it, i, size);
if (expr->eval_boolean(c, stack))
{
*last++ = *it;
if (once) break;
}
}
ns.truncate(last);
}
static void apply_predicate_number(xpath_node_set_raw& ns, size_t first, xpath_ast_node* expr, const xpath_stack& stack, bool once)
{
assert(ns.size() >= first);
assert(expr->rettype() == xpath_type_number);
size_t i = 1;
size_t size = ns.size() - first;
xpath_node* last = ns.begin() + first;
// remove_if... or well, sort of
for (xpath_node* it = last; it != ns.end(); ++it, ++i)
{
xpath_context c(*it, i, size);
if (expr->eval_number(c, stack) == static_cast<double>(i))
{
*last++ = *it;
if (once) break;
}
}
ns.truncate(last);
}
static void apply_predicate_number_const(xpath_node_set_raw& ns, size_t first, xpath_ast_node* expr, const xpath_stack& stack)
{
assert(ns.size() >= first);
assert(expr->rettype() == xpath_type_number);
size_t size = ns.size() - first;
xpath_node* last = ns.begin() + first;
xpath_context c(xpath_node(), 1, size);
double er = expr->eval_number(c, stack);
if (er >= 1.0 && er <= static_cast<double>(size))
{
size_t eri = static_cast<size_t>(er);
if (er == static_cast<double>(eri))
{
xpath_node r = last[eri - 1];
*last++ = r;
}
}
ns.truncate(last);
}
void apply_predicate(xpath_node_set_raw& ns, size_t first, const xpath_stack& stack, bool once)
{
if (ns.size() == first) return;
assert(_type == ast_filter || _type == ast_predicate);
if (_test == predicate_constant || _test == predicate_constant_one)
apply_predicate_number_const(ns, first, _right, stack);
else if (_right->rettype() == xpath_type_number)
apply_predicate_number(ns, first, _right, stack, once);
else
apply_predicate_boolean(ns, first, _right, stack, once);
}
void apply_predicates(xpath_node_set_raw& ns, size_t first, const xpath_stack& stack, nodeset_eval_t eval)
{
if (ns.size() == first) return;
bool last_once = eval_once(ns.type(), eval);
for (xpath_ast_node* pred = _right; pred; pred = pred->_next)
pred->apply_predicate(ns, first, stack, !pred->_next && last_once);
}
bool step_push(xpath_node_set_raw& ns, xml_attribute_struct* a, xml_node_struct* parent, xpath_allocator* alloc)
{
assert(a);
const char_t* name = a->name ? a->name + 0 : PUGIXML_TEXT("");
switch (_test)
{
case nodetest_name:
if (strequal(name, _data.nodetest) && is_xpath_attribute(name))
{
ns.push_back(xpath_node(xml_attribute(a), xml_node(parent)), alloc);
return true;
}
break;
case nodetest_type_node:
case nodetest_all:
if (is_xpath_attribute(name))
{
ns.push_back(xpath_node(xml_attribute(a), xml_node(parent)), alloc);
return true;
}
break;
case nodetest_all_in_namespace:
if (starts_with(name, _data.nodetest) && is_xpath_attribute(name))
{
ns.push_back(xpath_node(xml_attribute(a), xml_node(parent)), alloc);
return true;
}
break;
default:
;
}
return false;
}
bool step_push(xpath_node_set_raw& ns, xml_node_struct* n, xpath_allocator* alloc)
{
assert(n);
xml_node_type type = PUGI__NODETYPE(n);
switch (_test)
{
case nodetest_name:
if (type == node_element && n->name && strequal(n->name, _data.nodetest))
{
ns.push_back(xml_node(n), alloc);
return true;
}
break;
case nodetest_type_node:
ns.push_back(xml_node(n), alloc);
return true;
case nodetest_type_comment:
if (type == node_comment)
{
ns.push_back(xml_node(n), alloc);
return true;
}
break;
case nodetest_type_text:
if (type == node_pcdata || type == node_cdata)
{
ns.push_back(xml_node(n), alloc);
return true;
}
break;
case nodetest_type_pi:
if (type == node_pi)
{
ns.push_back(xml_node(n), alloc);
return true;
}
break;
case nodetest_pi:
if (type == node_pi && n->name && strequal(n->name, _data.nodetest))
{
ns.push_back(xml_node(n), alloc);
return true;
}
break;
case nodetest_all:
if (type == node_element)
{
ns.push_back(xml_node(n), alloc);
return true;
}
break;
case nodetest_all_in_namespace:
if (type == node_element && n->name && starts_with(n->name, _data.nodetest))
{
ns.push_back(xml_node(n), alloc);
return true;
}
break;
default:
assert(false && "Unknown axis"); // unreachable
}
return false;
}
template <class T> void step_fill(xpath_node_set_raw& ns, xml_node_struct* n, xpath_allocator* alloc, bool once, T)
{
const axis_t axis = T::axis;
switch (axis)
{
case axis_attribute:
{
for (xml_attribute_struct* a = n->first_attribute; a; a = a->next_attribute)
if (step_push(ns, a, n, alloc) & once)
return;
break;
}
case axis_child:
{
for (xml_node_struct* c = n->first_child; c; c = c->next_sibling)
if (step_push(ns, c, alloc) & once)
return;
break;
}
case axis_descendant:
case axis_descendant_or_self:
{
if (axis == axis_descendant_or_self)
if (step_push(ns, n, alloc) & once)
return;
xml_node_struct* cur = n->first_child;
while (cur)
{
if (step_push(ns, cur, alloc) & once)
return;
if (cur->first_child)
cur = cur->first_child;
else
{
while (!cur->next_sibling)
{
cur = cur->parent;
if (cur == n) return;
}
cur = cur->next_sibling;
}
}
break;
}
case axis_following_sibling:
{
for (xml_node_struct* c = n->next_sibling; c; c = c->next_sibling)
if (step_push(ns, c, alloc) & once)
return;
break;
}
case axis_preceding_sibling:
{
for (xml_node_struct* c = n->prev_sibling_c; c->next_sibling; c = c->prev_sibling_c)
if (step_push(ns, c, alloc) & once)
return;
break;
}
case axis_following:
{
xml_node_struct* cur = n;
// exit from this node so that we don't include descendants
while (!cur->next_sibling)
{
cur = cur->parent;
if (!cur) return;
}
cur = cur->next_sibling;
while (cur)
{
if (step_push(ns, cur, alloc) & once)
return;
if (cur->first_child)
cur = cur->first_child;
else
{
while (!cur->next_sibling)
{
cur = cur->parent;
if (!cur) return;
}
cur = cur->next_sibling;
}
}
break;
}
case axis_preceding:
{
xml_node_struct* cur = n;
// exit from this node so that we don't include descendants
while (!cur->prev_sibling_c->next_sibling)
{
cur = cur->parent;
if (!cur) return;
}
cur = cur->prev_sibling_c;
while (cur)
{
if (cur->first_child)
cur = cur->first_child->prev_sibling_c;
else
{
// leaf node, can't be ancestor
if (step_push(ns, cur, alloc) & once)
return;
while (!cur->prev_sibling_c->next_sibling)
{
cur = cur->parent;
if (!cur) return;
if (!node_is_ancestor(cur, n))
if (step_push(ns, cur, alloc) & once)
return;
}
cur = cur->prev_sibling_c;
}
}
break;
}
case axis_ancestor:
case axis_ancestor_or_self:
{
if (axis == axis_ancestor_or_self)
if (step_push(ns, n, alloc) & once)
return;
xml_node_struct* cur = n->parent;
while (cur)
{
if (step_push(ns, cur, alloc) & once)
return;
cur = cur->parent;
}
break;
}
case axis_self:
{
step_push(ns, n, alloc);
break;
}
case axis_parent:
{
if (n->parent)
step_push(ns, n->parent, alloc);
break;
}
default:
assert(false && "Unimplemented axis"); // unreachable
}
}
template <class T> void step_fill(xpath_node_set_raw& ns, xml_attribute_struct* a, xml_node_struct* p, xpath_allocator* alloc, bool once, T v)
{
const axis_t axis = T::axis;
switch (axis)
{
case axis_ancestor:
case axis_ancestor_or_self:
{
if (axis == axis_ancestor_or_self && _test == nodetest_type_node) // reject attributes based on principal node type test
if (step_push(ns, a, p, alloc) & once)
return;
xml_node_struct* cur = p;
while (cur)
{
if (step_push(ns, cur, alloc) & once)
return;
cur = cur->parent;
}
break;
}
case axis_descendant_or_self:
case axis_self:
{
if (_test == nodetest_type_node) // reject attributes based on principal node type test
step_push(ns, a, p, alloc);
break;
}
case axis_following:
{
xml_node_struct* cur = p;
while (cur)
{
if (cur->first_child)
cur = cur->first_child;
else
{
while (!cur->next_sibling)
{
cur = cur->parent;
if (!cur) return;
}
cur = cur->next_sibling;
}
if (step_push(ns, cur, alloc) & once)
return;
}
break;
}
case axis_parent:
{
step_push(ns, p, alloc);
break;
}
case axis_preceding:
{
// preceding:: axis does not include attribute nodes and attribute ancestors (they are the same as parent's ancestors), so we can reuse node preceding
step_fill(ns, p, alloc, once, v);
break;
}
default:
assert(false && "Unimplemented axis"); // unreachable
}
}
template <class T> void step_fill(xpath_node_set_raw& ns, const xpath_node& xn, xpath_allocator* alloc, bool once, T v)
{
const axis_t axis = T::axis;
const bool axis_has_attributes = (axis == axis_ancestor || axis == axis_ancestor_or_self || axis == axis_descendant_or_self || axis == axis_following || axis == axis_parent || axis == axis_preceding || axis == axis_self);
if (xn.node())
step_fill(ns, xn.node().internal_object(), alloc, once, v);
else if (axis_has_attributes && xn.attribute() && xn.parent())
step_fill(ns, xn.attribute().internal_object(), xn.parent().internal_object(), alloc, once, v);
}
template <class T> xpath_node_set_raw step_do(const xpath_context& c, const xpath_stack& stack, nodeset_eval_t eval, T v)
{
const axis_t axis = T::axis;
const bool axis_reverse = (axis == axis_ancestor || axis == axis_ancestor_or_self || axis == axis_preceding || axis == axis_preceding_sibling);
const xpath_node_set::type_t axis_type = axis_reverse ? xpath_node_set::type_sorted_reverse : xpath_node_set::type_sorted;
bool once =
(axis == axis_attribute && _test == nodetest_name) ||
(!_right && eval_once(axis_type, eval)) ||
// coverity[mixed_enums]
(_right && !_right->_next && _right->_test == predicate_constant_one);
xpath_node_set_raw ns;
ns.set_type(axis_type);
if (_left)
{
xpath_node_set_raw s = _left->eval_node_set(c, stack, nodeset_eval_all);
// self axis preserves the original order
if (axis == axis_self) ns.set_type(s.type());
for (const xpath_node* it = s.begin(); it != s.end(); ++it)
{
size_t size = ns.size();
// in general, all axes generate elements in a particular order, but there is no order guarantee if axis is applied to two nodes
if (axis != axis_self && size != 0) ns.set_type(xpath_node_set::type_unsorted);
step_fill(ns, *it, stack.result, once, v);
if (_right) apply_predicates(ns, size, stack, eval);
}
}
else
{
step_fill(ns, c.n, stack.result, once, v);
if (_right) apply_predicates(ns, 0, stack, eval);
}
// child, attribute and self axes always generate unique set of nodes
// for other axis, if the set stayed sorted, it stayed unique because the traversal algorithms do not visit the same node twice
if (axis != axis_child && axis != axis_attribute && axis != axis_self && ns.type() == xpath_node_set::type_unsorted)
ns.remove_duplicates(stack.temp);
return ns;
}
public:
xpath_ast_node(ast_type_t type, xpath_value_type rettype_, const char_t* value):
_type(static_cast<char>(type)), _rettype(static_cast<char>(rettype_)), _axis(0), _test(0), _left(0), _right(0), _next(0)
{
assert(type == ast_string_constant);
_data.string = value;
}
xpath_ast_node(ast_type_t type, xpath_value_type rettype_, double value):
_type(static_cast<char>(type)), _rettype(static_cast<char>(rettype_)), _axis(0), _test(0), _left(0), _right(0), _next(0)
{
assert(type == ast_number_constant);
_data.number = value;
}
xpath_ast_node(ast_type_t type, xpath_value_type rettype_, xpath_variable* value):
_type(static_cast<char>(type)), _rettype(static_cast<char>(rettype_)), _axis(0), _test(0), _left(0), _right(0), _next(0)
{
assert(type == ast_variable);
_data.variable = value;
}
xpath_ast_node(ast_type_t type, xpath_value_type rettype_, xpath_ast_node* left = 0, xpath_ast_node* right = 0):
_type(static_cast<char>(type)), _rettype(static_cast<char>(rettype_)), _axis(0), _test(0), _left(left), _right(right), _next(0)
{
}
xpath_ast_node(ast_type_t type, xpath_ast_node* left, axis_t axis, nodetest_t test, const char_t* contents):
_type(static_cast<char>(type)), _rettype(xpath_type_node_set), _axis(static_cast<char>(axis)), _test(static_cast<char>(test)), _left(left), _right(0), _next(0)
{
assert(type == ast_step);
_data.nodetest = contents;
}
xpath_ast_node(ast_type_t type, xpath_ast_node* left, xpath_ast_node* right, predicate_t test):
_type(static_cast<char>(type)), _rettype(xpath_type_node_set), _axis(0), _test(static_cast<char>(test)), _left(left), _right(right), _next(0)
{
assert(type == ast_filter || type == ast_predicate);
}
void set_next(xpath_ast_node* value)
{
_next = value;
}
void set_right(xpath_ast_node* value)
{
_right = value;
}
bool eval_boolean(const xpath_context& c, const xpath_stack& stack)
{
switch (_type)
{
case ast_op_or:
return _left->eval_boolean(c, stack) || _right->eval_boolean(c, stack);
case ast_op_and:
return _left->eval_boolean(c, stack) && _right->eval_boolean(c, stack);
case ast_op_equal:
return compare_eq(_left, _right, c, stack, equal_to());
case ast_op_not_equal:
return compare_eq(_left, _right, c, stack, not_equal_to());
case ast_op_less:
return compare_rel(_left, _right, c, stack, less());
case ast_op_greater:
return compare_rel(_right, _left, c, stack, less());
case ast_op_less_or_equal:
return compare_rel(_left, _right, c, stack, less_equal());
case ast_op_greater_or_equal:
return compare_rel(_right, _left, c, stack, less_equal());
case ast_func_starts_with:
{
xpath_allocator_capture cr(stack.result);
xpath_string lr = _left->eval_string(c, stack);
xpath_string rr = _right->eval_string(c, stack);
return starts_with(lr.c_str(), rr.c_str());
}
case ast_func_contains:
{
xpath_allocator_capture cr(stack.result);
xpath_string lr = _left->eval_string(c, stack);
xpath_string rr = _right->eval_string(c, stack);
return find_substring(lr.c_str(), rr.c_str()) != 0;
}
case ast_func_boolean:
return _left->eval_boolean(c, stack);
case ast_func_not:
return !_left->eval_boolean(c, stack);
case ast_func_true:
return true;
case ast_func_false:
return false;
case ast_func_lang:
{
if (c.n.attribute()) return false;
xpath_allocator_capture cr(stack.result);
xpath_string lang = _left->eval_string(c, stack);
for (xml_node n = c.n.node(); n; n = n.parent())
{
xml_attribute a = n.attribute(PUGIXML_TEXT("xml:lang"));
if (a)
{
const char_t* value = a.value();
// strnicmp / strncasecmp is not portable
for (const char_t* lit = lang.c_str(); *lit; ++lit)
{
if (tolower_ascii(*lit) != tolower_ascii(*value)) return false;
++value;
}
return *value == 0 || *value == '-';
}
}
return false;
}
case ast_opt_compare_attribute:
{
const char_t* value = (_right->_type == ast_string_constant) ? _right->_data.string : _right->_data.variable->get_string();
xml_attribute attr = c.n.node().attribute(_left->_data.nodetest);
return attr && strequal(attr.value(), value) && is_xpath_attribute(attr.name());
}
case ast_variable:
{
assert(_rettype == _data.variable->type());
if (_rettype == xpath_type_boolean)
return _data.variable->get_boolean();
// variable needs to be converted to the correct type, this is handled by the fallthrough block below
break;
}
default:
;
}
// none of the ast types that return the value directly matched, we need to perform type conversion
switch (_rettype)
{
case xpath_type_number:
return convert_number_to_boolean(eval_number(c, stack));
case xpath_type_string:
{
xpath_allocator_capture cr(stack.result);
return !eval_string(c, stack).empty();
}
case xpath_type_node_set:
{
xpath_allocator_capture cr(stack.result);
return !eval_node_set(c, stack, nodeset_eval_any).empty();
}
default:
assert(false && "Wrong expression for return type boolean"); // unreachable
return false;
}
}
double eval_number(const xpath_context& c, const xpath_stack& stack)
{
switch (_type)
{
case ast_op_add:
return _left->eval_number(c, stack) + _right->eval_number(c, stack);
case ast_op_subtract:
return _left->eval_number(c, stack) - _right->eval_number(c, stack);
case ast_op_multiply:
return _left->eval_number(c, stack) * _right->eval_number(c, stack);
case ast_op_divide:
return _left->eval_number(c, stack) / _right->eval_number(c, stack);
case ast_op_mod:
return fmod(_left->eval_number(c, stack), _right->eval_number(c, stack));
case ast_op_negate:
return -_left->eval_number(c, stack);
case ast_number_constant:
return _data.number;
case ast_func_last:
return static_cast<double>(c.size);
case ast_func_position:
return static_cast<double>(c.position);
case ast_func_count:
{
xpath_allocator_capture cr(stack.result);
return static_cast<double>(_left->eval_node_set(c, stack, nodeset_eval_all).size());
}
case ast_func_string_length_0:
{
xpath_allocator_capture cr(stack.result);
return static_cast<double>(string_value(c.n, stack.result).length());
}
case ast_func_string_length_1:
{
xpath_allocator_capture cr(stack.result);
return static_cast<double>(_left->eval_string(c, stack).length());
}
case ast_func_number_0:
{
xpath_allocator_capture cr(stack.result);
return convert_string_to_number(string_value(c.n, stack.result).c_str());
}
case ast_func_number_1:
return _left->eval_number(c, stack);
case ast_func_sum:
{
xpath_allocator_capture cr(stack.result);
double r = 0;
xpath_node_set_raw ns = _left->eval_node_set(c, stack, nodeset_eval_all);
for (const xpath_node* it = ns.begin(); it != ns.end(); ++it)
{
xpath_allocator_capture cri(stack.result);
r += convert_string_to_number(string_value(*it, stack.result).c_str());
}
return r;
}
case ast_func_floor:
{
double r = _left->eval_number(c, stack);
return r == r ? floor(r) : r;
}
case ast_func_ceiling:
{
double r = _left->eval_number(c, stack);
return r == r ? ceil(r) : r;
}
case ast_func_round:
return round_nearest_nzero(_left->eval_number(c, stack));
case ast_variable:
{
assert(_rettype == _data.variable->type());
if (_rettype == xpath_type_number)
return _data.variable->get_number();
// variable needs to be converted to the correct type, this is handled by the fallthrough block below
break;
}
default:
;
}
// none of the ast types that return the value directly matched, we need to perform type conversion
switch (_rettype)
{
case xpath_type_boolean:
return eval_boolean(c, stack) ? 1 : 0;
case xpath_type_string:
{
xpath_allocator_capture cr(stack.result);
return convert_string_to_number(eval_string(c, stack).c_str());
}
case xpath_type_node_set:
{
xpath_allocator_capture cr(stack.result);
return convert_string_to_number(eval_string(c, stack).c_str());
}
default:
assert(false && "Wrong expression for return type number"); // unreachable
return 0;
}
}
xpath_string eval_string_concat(const xpath_context& c, const xpath_stack& stack)
{
assert(_type == ast_func_concat);
xpath_allocator_capture ct(stack.temp);
// count the string number
size_t count = 1;
for (xpath_ast_node* nc = _right; nc; nc = nc->_next) count++;
// allocate a buffer for temporary string objects
xpath_string* buffer = static_cast<xpath_string*>(stack.temp->allocate(count * sizeof(xpath_string)));
if (!buffer) return xpath_string();
// evaluate all strings to temporary stack
xpath_stack swapped_stack = {stack.temp, stack.result};
buffer[0] = _left->eval_string(c, swapped_stack);
size_t pos = 1;
for (xpath_ast_node* n = _right; n; n = n->_next, ++pos) buffer[pos] = n->eval_string(c, swapped_stack);
assert(pos == count);
// get total length
size_t length = 0;
for (size_t i = 0; i < count; ++i) length += buffer[i].length();
// create final string
char_t* result = static_cast<char_t*>(stack.result->allocate((length + 1) * sizeof(char_t)));
if (!result) return xpath_string();
char_t* ri = result;
for (size_t j = 0; j < count; ++j)
for (const char_t* bi = buffer[j].c_str(); *bi; ++bi)
*ri++ = *bi;
*ri = 0;
return xpath_string::from_heap_preallocated(result, ri);
}
xpath_string eval_string(const xpath_context& c, const xpath_stack& stack)
{
switch (_type)
{
case ast_string_constant:
return xpath_string::from_const(_data.string);
case ast_func_local_name_0:
{
xpath_node na = c.n;
return xpath_string::from_const(local_name(na));
}
case ast_func_local_name_1:
{
xpath_allocator_capture cr(stack.result);
xpath_node_set_raw ns = _left->eval_node_set(c, stack, nodeset_eval_first);
xpath_node na = ns.first();
return xpath_string::from_const(local_name(na));
}
case ast_func_name_0:
{
xpath_node na = c.n;
return xpath_string::from_const(qualified_name(na));
}
case ast_func_name_1:
{
xpath_allocator_capture cr(stack.result);
xpath_node_set_raw ns = _left->eval_node_set(c, stack, nodeset_eval_first);
xpath_node na = ns.first();
return xpath_string::from_const(qualified_name(na));
}
case ast_func_namespace_uri_0:
{
xpath_node na = c.n;
return xpath_string::from_const(namespace_uri(na));
}
case ast_func_namespace_uri_1:
{
xpath_allocator_capture cr(stack.result);
xpath_node_set_raw ns = _left->eval_node_set(c, stack, nodeset_eval_first);
xpath_node na = ns.first();
return xpath_string::from_const(namespace_uri(na));
}
case ast_func_string_0:
return string_value(c.n, stack.result);
case ast_func_string_1:
return _left->eval_string(c, stack);
case ast_func_concat:
return eval_string_concat(c, stack);
case ast_func_substring_before:
{
xpath_allocator_capture cr(stack.temp);
xpath_stack swapped_stack = {stack.temp, stack.result};
xpath_string s = _left->eval_string(c, swapped_stack);
xpath_string p = _right->eval_string(c, swapped_stack);
const char_t* pos = find_substring(s.c_str(), p.c_str());
return pos ? xpath_string::from_heap(s.c_str(), pos, stack.result) : xpath_string();
}
case ast_func_substring_after:
{
xpath_allocator_capture cr(stack.temp);
xpath_stack swapped_stack = {stack.temp, stack.result};
xpath_string s = _left->eval_string(c, swapped_stack);
xpath_string p = _right->eval_string(c, swapped_stack);
const char_t* pos = find_substring(s.c_str(), p.c_str());
if (!pos) return xpath_string();
const char_t* rbegin = pos + p.length();
const char_t* rend = s.c_str() + s.length();
return s.uses_heap() ? xpath_string::from_heap(rbegin, rend, stack.result) : xpath_string::from_const(rbegin);
}
case ast_func_substring_2:
{
xpath_allocator_capture cr(stack.temp);
xpath_stack swapped_stack = {stack.temp, stack.result};
xpath_string s = _left->eval_string(c, swapped_stack);
size_t s_length = s.length();
double first = round_nearest(_right->eval_number(c, stack));
if (is_nan(first)) return xpath_string(); // NaN
else if (first >= static_cast<double>(s_length + 1)) return xpath_string();
size_t pos = first < 1 ? 1 : static_cast<size_t>(first);
assert(1 <= pos && pos <= s_length + 1);
const char_t* rbegin = s.c_str() + (pos - 1);
const char_t* rend = s.c_str() + s.length();
return s.uses_heap() ? xpath_string::from_heap(rbegin, rend, stack.result) : xpath_string::from_const(rbegin);
}
case ast_func_substring_3:
{
xpath_allocator_capture cr(stack.temp);
xpath_stack swapped_stack = {stack.temp, stack.result};
xpath_string s = _left->eval_string(c, swapped_stack);
size_t s_length = s.length();
double first = round_nearest(_right->eval_number(c, stack));
double last = first + round_nearest(_right->_next->eval_number(c, stack));
if (is_nan(first) || is_nan(last)) return xpath_string();
else if (first >= static_cast<double>(s_length + 1)) return xpath_string();
else if (first >= last) return xpath_string();
else if (last < 1) return xpath_string();
size_t pos = first < 1 ? 1 : static_cast<size_t>(first);
size_t end = last >= static_cast<double>(s_length + 1) ? s_length + 1 : static_cast<size_t>(last);
assert(1 <= pos && pos <= end && end <= s_length + 1);
const char_t* rbegin = s.c_str() + (pos - 1);
const char_t* rend = s.c_str() + (end - 1);
return (end == s_length + 1 && !s.uses_heap()) ? xpath_string::from_const(rbegin) : xpath_string::from_heap(rbegin, rend, stack.result);
}
case ast_func_normalize_space_0:
{
xpath_string s = string_value(c.n, stack.result);
char_t* begin = s.data(stack.result);
if (!begin) return xpath_string();
char_t* end = normalize_space(begin);
return xpath_string::from_heap_preallocated(begin, end);
}
case ast_func_normalize_space_1:
{
xpath_string s = _left->eval_string(c, stack);
char_t* begin = s.data(stack.result);
if (!begin) return xpath_string();
char_t* end = normalize_space(begin);
return xpath_string::from_heap_preallocated(begin, end);
}
case ast_func_translate:
{
xpath_allocator_capture cr(stack.temp);
xpath_stack swapped_stack = {stack.temp, stack.result};
xpath_string s = _left->eval_string(c, stack);
xpath_string from = _right->eval_string(c, swapped_stack);
xpath_string to = _right->_next->eval_string(c, swapped_stack);
char_t* begin = s.data(stack.result);
if (!begin) return xpath_string();
char_t* end = translate(begin, from.c_str(), to.c_str(), to.length());
return xpath_string::from_heap_preallocated(begin, end);
}
case ast_opt_translate_table:
{
xpath_string s = _left->eval_string(c, stack);
char_t* begin = s.data(stack.result);
if (!begin) return xpath_string();
char_t* end = translate_table(begin, _data.table);
return xpath_string::from_heap_preallocated(begin, end);
}
case ast_variable:
{
assert(_rettype == _data.variable->type());
if (_rettype == xpath_type_string)
return xpath_string::from_const(_data.variable->get_string());
// variable needs to be converted to the correct type, this is handled by the fallthrough block below
break;
}
default:
;
}
// none of the ast types that return the value directly matched, we need to perform type conversion
switch (_rettype)
{
case xpath_type_boolean:
return xpath_string::from_const(eval_boolean(c, stack) ? PUGIXML_TEXT("true") : PUGIXML_TEXT("false"));
case xpath_type_number:
return convert_number_to_string(eval_number(c, stack), stack.result);
case xpath_type_node_set:
{
xpath_allocator_capture cr(stack.temp);
xpath_stack swapped_stack = {stack.temp, stack.result};
xpath_node_set_raw ns = eval_node_set(c, swapped_stack, nodeset_eval_first);
return ns.empty() ? xpath_string() : string_value(ns.first(), stack.result);
}
default:
assert(false && "Wrong expression for return type string"); // unreachable
return xpath_string();
}
}
xpath_node_set_raw eval_node_set(const xpath_context& c, const xpath_stack& stack, nodeset_eval_t eval)
{
switch (_type)
{
case ast_op_union:
{
xpath_allocator_capture cr(stack.temp);
xpath_stack swapped_stack = {stack.temp, stack.result};
xpath_node_set_raw ls = _left->eval_node_set(c, stack, eval);
xpath_node_set_raw rs = _right->eval_node_set(c, swapped_stack, eval);
// we can optimize merging two sorted sets, but this is a very rare operation, so don't bother
ls.set_type(xpath_node_set::type_unsorted);
ls.append(rs.begin(), rs.end(), stack.result);
ls.remove_duplicates(stack.temp);
return ls;
}
case ast_filter:
{
xpath_node_set_raw set = _left->eval_node_set(c, stack, _test == predicate_constant_one ? nodeset_eval_first : nodeset_eval_all);
// either expression is a number or it contains position() call; sort by document order
if (_test != predicate_posinv) set.sort_do();
bool once = eval_once(set.type(), eval);
apply_predicate(set, 0, stack, once);
return set;
}
case ast_func_id:
return xpath_node_set_raw();
case ast_step:
{
switch (_axis)
{
case axis_ancestor:
return step_do(c, stack, eval, axis_to_type<axis_ancestor>());
case axis_ancestor_or_self:
return step_do(c, stack, eval, axis_to_type<axis_ancestor_or_self>());
case axis_attribute:
return step_do(c, stack, eval, axis_to_type<axis_attribute>());
case axis_child:
return step_do(c, stack, eval, axis_to_type<axis_child>());
case axis_descendant:
return step_do(c, stack, eval, axis_to_type<axis_descendant>());
case axis_descendant_or_self:
return step_do(c, stack, eval, axis_to_type<axis_descendant_or_self>());
case axis_following:
return step_do(c, stack, eval, axis_to_type<axis_following>());
case axis_following_sibling:
return step_do(c, stack, eval, axis_to_type<axis_following_sibling>());
case axis_namespace:
// namespaced axis is not supported
return xpath_node_set_raw();
case axis_parent:
return step_do(c, stack, eval, axis_to_type<axis_parent>());
case axis_preceding:
return step_do(c, stack, eval, axis_to_type<axis_preceding>());
case axis_preceding_sibling:
return step_do(c, stack, eval, axis_to_type<axis_preceding_sibling>());
case axis_self:
return step_do(c, stack, eval, axis_to_type<axis_self>());
default:
assert(false && "Unknown axis"); // unreachable
return xpath_node_set_raw();
}
}
case ast_step_root:
{
assert(!_right); // root step can't have any predicates
xpath_node_set_raw ns;
ns.set_type(xpath_node_set::type_sorted);
if (c.n.node()) ns.push_back(c.n.node().root(), stack.result);
else if (c.n.attribute()) ns.push_back(c.n.parent().root(), stack.result);
return ns;
}
case ast_variable:
{
assert(_rettype == _data.variable->type());
if (_rettype == xpath_type_node_set)
{
const xpath_node_set& s = _data.variable->get_node_set();
xpath_node_set_raw ns;
ns.set_type(s.type());
ns.append(s.begin(), s.end(), stack.result);
return ns;
}
// variable needs to be converted to the correct type, this is handled by the fallthrough block below
break;
}
default:
;
}
// none of the ast types that return the value directly matched, but conversions to node set are invalid
assert(false && "Wrong expression for return type node set"); // unreachable
return xpath_node_set_raw();
}
void optimize(xpath_allocator* alloc)
{
if (_left)
_left->optimize(alloc);
if (_right)
_right->optimize(alloc);
if (_next)
_next->optimize(alloc);
// coverity[var_deref_model]
optimize_self(alloc);
}
void optimize_self(xpath_allocator* alloc)
{
// Rewrite [position()=expr] with [expr]
// Note that this step has to go before classification to recognize [position()=1]
if ((_type == ast_filter || _type == ast_predicate) &&
_right && // workaround for clang static analyzer (_right is never null for ast_filter/ast_predicate)
_right->_type == ast_op_equal && _right->_left->_type == ast_func_position && _right->_right->_rettype == xpath_type_number)
{
_right = _right->_right;
}
// Classify filter/predicate ops to perform various optimizations during evaluation
if ((_type == ast_filter || _type == ast_predicate) && _right) // workaround for clang static analyzer (_right is never null for ast_filter/ast_predicate)
{
assert(_test == predicate_default);
if (_right->_type == ast_number_constant && _right->_data.number == 1.0)
_test = predicate_constant_one;
else if (_right->_rettype == xpath_type_number && (_right->_type == ast_number_constant || _right->_type == ast_variable || _right->_type == ast_func_last))
_test = predicate_constant;
else if (_right->_rettype != xpath_type_number && _right->is_posinv_expr())
_test = predicate_posinv;
}
// Rewrite descendant-or-self::node()/child::foo with descendant::foo
// The former is a full form of //foo, the latter is much faster since it executes the node test immediately
// Do a similar kind of rewrite for self/descendant/descendant-or-self axes
// Note that we only rewrite positionally invariant steps (//foo[1] != /descendant::foo[1])
if (_type == ast_step && (_axis == axis_child || _axis == axis_self || _axis == axis_descendant || _axis == axis_descendant_or_self) &&
_left && _left->_type == ast_step && _left->_axis == axis_descendant_or_self && _left->_test == nodetest_type_node && !_left->_right &&
is_posinv_step())
{
if (_axis == axis_child || _axis == axis_descendant)
_axis = axis_descendant;
else
_axis = axis_descendant_or_self;
_left = _left->_left;
}
// Use optimized lookup table implementation for translate() with constant arguments
if (_type == ast_func_translate &&
_right && // workaround for clang static analyzer (_right is never null for ast_func_translate)
_right->_type == ast_string_constant && _right->_next->_type == ast_string_constant)
{
unsigned char* table = translate_table_generate(alloc, _right->_data.string, _right->_next->_data.string);
if (table)
{
_type = ast_opt_translate_table;
_data.table = table;
}
}
// Use optimized path for @attr = 'value' or @attr = $value
if (_type == ast_op_equal &&
_left && _right && // workaround for clang static analyzer and Coverity (_left and _right are never null for ast_op_equal)
// coverity[mixed_enums]
_left->_type == ast_step && _left->_axis == axis_attribute && _left->_test == nodetest_name && !_left->_left && !_left->_right &&
(_right->_type == ast_string_constant || (_right->_type == ast_variable && _right->_rettype == xpath_type_string)))
{
_type = ast_opt_compare_attribute;
}
}
bool is_posinv_expr() const
{
switch (_type)
{
case ast_func_position:
case ast_func_last:
return false;
case ast_string_constant:
case ast_number_constant:
case ast_variable:
return true;
case ast_step:
case ast_step_root:
return true;
case ast_predicate:
case ast_filter:
return true;
default:
if (_left && !_left->is_posinv_expr()) return false;
for (xpath_ast_node* n = _right; n; n = n->_next)
if (!n->is_posinv_expr()) return false;
return true;
}
}
bool is_posinv_step() const
{
assert(_type == ast_step);
for (xpath_ast_node* n = _right; n; n = n->_next)
{
assert(n->_type == ast_predicate);
if (n->_test != predicate_posinv)
return false;
}
return true;
}
xpath_value_type rettype() const
{
return static_cast<xpath_value_type>(_rettype);
}
};
static const size_t xpath_ast_depth_limit =
#ifdef PUGIXML_XPATH_DEPTH_LIMIT
PUGIXML_XPATH_DEPTH_LIMIT
#else
1024
#endif
;
struct xpath_parser
{
xpath_allocator* _alloc;
xpath_lexer _lexer;
const char_t* _query;
xpath_variable_set* _variables;
xpath_parse_result* _result;
char_t _scratch[32];
size_t _depth;
xpath_ast_node* error(const char* message)
{
_result->error = message;
_result->offset = _lexer.current_pos() - _query;
return 0;
}
xpath_ast_node* error_oom()
{
assert(_alloc->_error);
*_alloc->_error = true;
return 0;
}
xpath_ast_node* error_rec()
{
return error("Exceeded maximum allowed query depth");
}
void* alloc_node()
{
return _alloc->allocate(sizeof(xpath_ast_node));
}
xpath_ast_node* alloc_node(ast_type_t type, xpath_value_type rettype, const char_t* value)
{
void* memory = alloc_node();
return memory ? new (memory) xpath_ast_node(type, rettype, value) : 0;
}
xpath_ast_node* alloc_node(ast_type_t type, xpath_value_type rettype, double value)
{
void* memory = alloc_node();
return memory ? new (memory) xpath_ast_node(type, rettype, value) : 0;
}
xpath_ast_node* alloc_node(ast_type_t type, xpath_value_type rettype, xpath_variable* value)
{
void* memory = alloc_node();
return memory ? new (memory) xpath_ast_node(type, rettype, value) : 0;
}
xpath_ast_node* alloc_node(ast_type_t type, xpath_value_type rettype, xpath_ast_node* left = 0, xpath_ast_node* right = 0)
{
void* memory = alloc_node();
return memory ? new (memory) xpath_ast_node(type, rettype, left, right) : 0;
}
xpath_ast_node* alloc_node(ast_type_t type, xpath_ast_node* left, axis_t axis, nodetest_t test, const char_t* contents)
{
void* memory = alloc_node();
return memory ? new (memory) xpath_ast_node(type, left, axis, test, contents) : 0;
}
xpath_ast_node* alloc_node(ast_type_t type, xpath_ast_node* left, xpath_ast_node* right, predicate_t test)
{
void* memory = alloc_node();
return memory ? new (memory) xpath_ast_node(type, left, right, test) : 0;
}
const char_t* alloc_string(const xpath_lexer_string& value)
{
if (!value.begin)
return PUGIXML_TEXT("");
size_t length = static_cast<size_t>(value.end - value.begin);
char_t* c = static_cast<char_t*>(_alloc->allocate((length + 1) * sizeof(char_t)));
if (!c) return 0;
memcpy(c, value.begin, length * sizeof(char_t));
c[length] = 0;
return c;
}
xpath_ast_node* parse_function(const xpath_lexer_string& name, size_t argc, xpath_ast_node* args[2])
{
switch (name.begin[0])
{
case 'b':
if (name == PUGIXML_TEXT("boolean") && argc == 1)
return alloc_node(ast_func_boolean, xpath_type_boolean, args[0]);
break;
case 'c':
if (name == PUGIXML_TEXT("count") && argc == 1)
{
if (args[0]->rettype() != xpath_type_node_set) return error("Function has to be applied to node set");
return alloc_node(ast_func_count, xpath_type_number, args[0]);
}
else if (name == PUGIXML_TEXT("contains") && argc == 2)
return alloc_node(ast_func_contains, xpath_type_boolean, args[0], args[1]);
else if (name == PUGIXML_TEXT("concat") && argc >= 2)
return alloc_node(ast_func_concat, xpath_type_string, args[0], args[1]);
else if (name == PUGIXML_TEXT("ceiling") && argc == 1)
return alloc_node(ast_func_ceiling, xpath_type_number, args[0]);
break;
case 'f':
if (name == PUGIXML_TEXT("false") && argc == 0)
return alloc_node(ast_func_false, xpath_type_boolean);
else if (name == PUGIXML_TEXT("floor") && argc == 1)
return alloc_node(ast_func_floor, xpath_type_number, args[0]);
break;
case 'i':
if (name == PUGIXML_TEXT("id") && argc == 1)
return alloc_node(ast_func_id, xpath_type_node_set, args[0]);
break;
case 'l':
if (name == PUGIXML_TEXT("last") && argc == 0)
return alloc_node(ast_func_last, xpath_type_number);
else if (name == PUGIXML_TEXT("lang") && argc == 1)
return alloc_node(ast_func_lang, xpath_type_boolean, args[0]);
else if (name == PUGIXML_TEXT("local-name") && argc <= 1)
{
if (argc == 1 && args[0]->rettype() != xpath_type_node_set) return error("Function has to be applied to node set");
return alloc_node(argc == 0 ? ast_func_local_name_0 : ast_func_local_name_1, xpath_type_string, args[0]);
}
break;
case 'n':
if (name == PUGIXML_TEXT("name") && argc <= 1)
{
if (argc == 1 && args[0]->rettype() != xpath_type_node_set) return error("Function has to be applied to node set");
return alloc_node(argc == 0 ? ast_func_name_0 : ast_func_name_1, xpath_type_string, args[0]);
}
else if (name == PUGIXML_TEXT("namespace-uri") && argc <= 1)
{
if (argc == 1 && args[0]->rettype() != xpath_type_node_set) return error("Function has to be applied to node set");
return alloc_node(argc == 0 ? ast_func_namespace_uri_0 : ast_func_namespace_uri_1, xpath_type_string, args[0]);
}
else if (name == PUGIXML_TEXT("normalize-space") && argc <= 1)
return alloc_node(argc == 0 ? ast_func_normalize_space_0 : ast_func_normalize_space_1, xpath_type_string, args[0], args[1]);
else if (name == PUGIXML_TEXT("not") && argc == 1)
return alloc_node(ast_func_not, xpath_type_boolean, args[0]);
else if (name == PUGIXML_TEXT("number") && argc <= 1)
return alloc_node(argc == 0 ? ast_func_number_0 : ast_func_number_1, xpath_type_number, args[0]);
break;
case 'p':
if (name == PUGIXML_TEXT("position") && argc == 0)
return alloc_node(ast_func_position, xpath_type_number);
break;
case 'r':
if (name == PUGIXML_TEXT("round") && argc == 1)
return alloc_node(ast_func_round, xpath_type_number, args[0]);
break;
case 's':
if (name == PUGIXML_TEXT("string") && argc <= 1)
return alloc_node(argc == 0 ? ast_func_string_0 : ast_func_string_1, xpath_type_string, args[0]);
else if (name == PUGIXML_TEXT("string-length") && argc <= 1)
return alloc_node(argc == 0 ? ast_func_string_length_0 : ast_func_string_length_1, xpath_type_number, args[0]);
else if (name == PUGIXML_TEXT("starts-with") && argc == 2)
return alloc_node(ast_func_starts_with, xpath_type_boolean, args[0], args[1]);
else if (name == PUGIXML_TEXT("substring-before") && argc == 2)
return alloc_node(ast_func_substring_before, xpath_type_string, args[0], args[1]);
else if (name == PUGIXML_TEXT("substring-after") && argc == 2)
return alloc_node(ast_func_substring_after, xpath_type_string, args[0], args[1]);
else if (name == PUGIXML_TEXT("substring") && (argc == 2 || argc == 3))
return alloc_node(argc == 2 ? ast_func_substring_2 : ast_func_substring_3, xpath_type_string, args[0], args[1]);
else if (name == PUGIXML_TEXT("sum") && argc == 1)
{
if (args[0]->rettype() != xpath_type_node_set) return error("Function has to be applied to node set");
return alloc_node(ast_func_sum, xpath_type_number, args[0]);
}
break;
case 't':
if (name == PUGIXML_TEXT("translate") && argc == 3)
return alloc_node(ast_func_translate, xpath_type_string, args[0], args[1]);
else if (name == PUGIXML_TEXT("true") && argc == 0)
return alloc_node(ast_func_true, xpath_type_boolean);
break;
default:
break;
}
return error("Unrecognized function or wrong parameter count");
}
axis_t parse_axis_name(const xpath_lexer_string& name, bool& specified)
{
specified = true;
switch (name.begin[0])
{
case 'a':
if (name == PUGIXML_TEXT("ancestor"))
return axis_ancestor;
else if (name == PUGIXML_TEXT("ancestor-or-self"))
return axis_ancestor_or_self;
else if (name == PUGIXML_TEXT("attribute"))
return axis_attribute;
break;
case 'c':
if (name == PUGIXML_TEXT("child"))
return axis_child;
break;
case 'd':
if (name == PUGIXML_TEXT("descendant"))
return axis_descendant;
else if (name == PUGIXML_TEXT("descendant-or-self"))
return axis_descendant_or_self;
break;
case 'f':
if (name == PUGIXML_TEXT("following"))
return axis_following;
else if (name == PUGIXML_TEXT("following-sibling"))
return axis_following_sibling;
break;
case 'n':
if (name == PUGIXML_TEXT("namespace"))
return axis_namespace;
break;
case 'p':
if (name == PUGIXML_TEXT("parent"))
return axis_parent;
else if (name == PUGIXML_TEXT("preceding"))
return axis_preceding;
else if (name == PUGIXML_TEXT("preceding-sibling"))
return axis_preceding_sibling;
break;
case 's':
if (name == PUGIXML_TEXT("self"))
return axis_self;
break;
default:
break;
}
specified = false;
return axis_child;
}
nodetest_t parse_node_test_type(const xpath_lexer_string& name)
{
switch (name.begin[0])
{
case 'c':
if (name == PUGIXML_TEXT("comment"))
return nodetest_type_comment;
break;
case 'n':
if (name == PUGIXML_TEXT("node"))
return nodetest_type_node;
break;
case 'p':
if (name == PUGIXML_TEXT("processing-instruction"))
return nodetest_type_pi;
break;
case 't':
if (name == PUGIXML_TEXT("text"))
return nodetest_type_text;
break;
default:
break;
}
return nodetest_none;
}
// PrimaryExpr ::= VariableReference | '(' Expr ')' | Literal | Number | FunctionCall
xpath_ast_node* parse_primary_expression()
{
switch (_lexer.current())
{
case lex_var_ref:
{
xpath_lexer_string name = _lexer.contents();
if (!_variables)
return error("Unknown variable: variable set is not provided");
xpath_variable* var = 0;
if (!get_variable_scratch(_scratch, _variables, name.begin, name.end, &var))
return error_oom();
if (!var)
return error("Unknown variable: variable set does not contain the given name");
_lexer.next();
return alloc_node(ast_variable, var->type(), var);
}
case lex_open_brace:
{
_lexer.next();
xpath_ast_node* n = parse_expression();
if (!n) return 0;
if (_lexer.current() != lex_close_brace)
return error("Expected ')' to match an opening '('");
_lexer.next();
return n;
}
case lex_quoted_string:
{
const char_t* value = alloc_string(_lexer.contents());
if (!value) return 0;
_lexer.next();
return alloc_node(ast_string_constant, xpath_type_string, value);
}
case lex_number:
{
double value = 0;
if (!convert_string_to_number_scratch(_scratch, _lexer.contents().begin, _lexer.contents().end, &value))
return error_oom();
_lexer.next();
return alloc_node(ast_number_constant, xpath_type_number, value);
}
case lex_string:
{
xpath_ast_node* args[2] = {0};
size_t argc = 0;
xpath_lexer_string function = _lexer.contents();
_lexer.next();
xpath_ast_node* last_arg = 0;
if (_lexer.current() != lex_open_brace)
return error("Unrecognized function call");
_lexer.next();
size_t old_depth = _depth;
while (_lexer.current() != lex_close_brace)
{
if (argc > 0)
{
if (_lexer.current() != lex_comma)
return error("No comma between function arguments");
_lexer.next();
}
if (++_depth > xpath_ast_depth_limit)
return error_rec();
xpath_ast_node* n = parse_expression();
if (!n) return 0;
if (argc < 2) args[argc] = n;
else last_arg->set_next(n);
argc++;
last_arg = n;
}
_lexer.next();
_depth = old_depth;
return parse_function(function, argc, args);
}
default:
return error("Unrecognizable primary expression");
}
}
// FilterExpr ::= PrimaryExpr | FilterExpr Predicate
// Predicate ::= '[' PredicateExpr ']'
// PredicateExpr ::= Expr
xpath_ast_node* parse_filter_expression()
{
xpath_ast_node* n = parse_primary_expression();
if (!n) return 0;
size_t old_depth = _depth;
while (_lexer.current() == lex_open_square_brace)
{
_lexer.next();
if (++_depth > xpath_ast_depth_limit)
return error_rec();
if (n->rettype() != xpath_type_node_set)
return error("Predicate has to be applied to node set");
xpath_ast_node* expr = parse_expression();
if (!expr) return 0;
n = alloc_node(ast_filter, n, expr, predicate_default);
if (!n) return 0;
if (_lexer.current() != lex_close_square_brace)
return error("Expected ']' to match an opening '['");
_lexer.next();
}
_depth = old_depth;
return n;
}
// Step ::= AxisSpecifier NodeTest Predicate* | AbbreviatedStep
// AxisSpecifier ::= AxisName '::' | '@'?
// NodeTest ::= NameTest | NodeType '(' ')' | 'processing-instruction' '(' Literal ')'
// NameTest ::= '*' | NCName ':' '*' | QName
// AbbreviatedStep ::= '.' | '..'
xpath_ast_node* parse_step(xpath_ast_node* set)
{
if (set && set->rettype() != xpath_type_node_set)
return error("Step has to be applied to node set");
bool axis_specified = false;
axis_t axis = axis_child; // implied child axis
if (_lexer.current() == lex_axis_attribute)
{
axis = axis_attribute;
axis_specified = true;
_lexer.next();
}
else if (_lexer.current() == lex_dot)
{
_lexer.next();
if (_lexer.current() == lex_open_square_brace)
return error("Predicates are not allowed after an abbreviated step");
return alloc_node(ast_step, set, axis_self, nodetest_type_node, 0);
}
else if (_lexer.current() == lex_double_dot)
{
_lexer.next();
if (_lexer.current() == lex_open_square_brace)
return error("Predicates are not allowed after an abbreviated step");
return alloc_node(ast_step, set, axis_parent, nodetest_type_node, 0);
}
nodetest_t nt_type = nodetest_none;
xpath_lexer_string nt_name;
if (_lexer.current() == lex_string)
{
// node name test
nt_name = _lexer.contents();
_lexer.next();
// was it an axis name?
if (_lexer.current() == lex_double_colon)
{
// parse axis name
if (axis_specified)
return error("Two axis specifiers in one step");
axis = parse_axis_name(nt_name, axis_specified);
if (!axis_specified)
return error("Unknown axis");
// read actual node test
_lexer.next();
if (_lexer.current() == lex_multiply)
{
nt_type = nodetest_all;
nt_name = xpath_lexer_string();
_lexer.next();
}
else if (_lexer.current() == lex_string)
{
nt_name = _lexer.contents();
_lexer.next();
}
else
{
return error("Unrecognized node test");
}
}
if (nt_type == nodetest_none)
{
// node type test or processing-instruction
if (_lexer.current() == lex_open_brace)
{
_lexer.next();
if (_lexer.current() == lex_close_brace)
{
_lexer.next();
nt_type = parse_node_test_type(nt_name);
if (nt_type == nodetest_none)
return error("Unrecognized node type");
nt_name = xpath_lexer_string();
}
else if (nt_name == PUGIXML_TEXT("processing-instruction"))
{
if (_lexer.current() != lex_quoted_string)
return error("Only literals are allowed as arguments to processing-instruction()");
nt_type = nodetest_pi;
nt_name = _lexer.contents();
_lexer.next();
if (_lexer.current() != lex_close_brace)
return error("Unmatched brace near processing-instruction()");
_lexer.next();
}
else
{
return error("Unmatched brace near node type test");
}
}
// QName or NCName:*
else
{
if (nt_name.end - nt_name.begin > 2 && nt_name.end[-2] == ':' && nt_name.end[-1] == '*') // NCName:*
{
nt_name.end--; // erase *
nt_type = nodetest_all_in_namespace;
}
else
{
nt_type = nodetest_name;
}
}
}
}
else if (_lexer.current() == lex_multiply)
{
nt_type = nodetest_all;
_lexer.next();
}
else
{
return error("Unrecognized node test");
}
const char_t* nt_name_copy = alloc_string(nt_name);
if (!nt_name_copy) return 0;
xpath_ast_node* n = alloc_node(ast_step, set, axis, nt_type, nt_name_copy);
if (!n) return 0;
size_t old_depth = _depth;
xpath_ast_node* last = 0;
while (_lexer.current() == lex_open_square_brace)
{
_lexer.next();
if (++_depth > xpath_ast_depth_limit)
return error_rec();
xpath_ast_node* expr = parse_expression();
if (!expr) return 0;
xpath_ast_node* pred = alloc_node(ast_predicate, 0, expr, predicate_default);
if (!pred) return 0;
if (_lexer.current() != lex_close_square_brace)
return error("Expected ']' to match an opening '['");
_lexer.next();
if (last) last->set_next(pred);
else n->set_right(pred);
last = pred;
}
_depth = old_depth;
return n;
}
// RelativeLocationPath ::= Step | RelativeLocationPath '/' Step | RelativeLocationPath '//' Step
xpath_ast_node* parse_relative_location_path(xpath_ast_node* set)
{
xpath_ast_node* n = parse_step(set);
if (!n) return 0;
size_t old_depth = _depth;
while (_lexer.current() == lex_slash || _lexer.current() == lex_double_slash)
{
lexeme_t l = _lexer.current();
_lexer.next();
if (++_depth > xpath_ast_depth_limit)
return error_rec();
if (l == lex_double_slash)
{
n = alloc_node(ast_step, n, axis_descendant_or_self, nodetest_type_node, 0);
if (!n) return 0;
}
n = parse_step(n);
if (!n) return 0;
}
_depth = old_depth;
return n;
}
// LocationPath ::= RelativeLocationPath | AbsoluteLocationPath
// AbsoluteLocationPath ::= '/' RelativeLocationPath? | '//' RelativeLocationPath
xpath_ast_node* parse_location_path()
{
if (_lexer.current() == lex_slash)
{
_lexer.next();
xpath_ast_node* n = alloc_node(ast_step_root, xpath_type_node_set);
if (!n) return 0;
// relative location path can start from axis_attribute, dot, double_dot, multiply and string lexemes; any other lexeme means standalone root path
lexeme_t l = _lexer.current();
if (l == lex_string || l == lex_axis_attribute || l == lex_dot || l == lex_double_dot || l == lex_multiply)
return parse_relative_location_path(n);
else
return n;
}
else if (_lexer.current() == lex_double_slash)
{
_lexer.next();
xpath_ast_node* n = alloc_node(ast_step_root, xpath_type_node_set);
if (!n) return 0;
n = alloc_node(ast_step, n, axis_descendant_or_self, nodetest_type_node, 0);
if (!n) return 0;
return parse_relative_location_path(n);
}
// else clause moved outside of if because of bogus warning 'control may reach end of non-void function being inlined' in gcc 4.0.1
return parse_relative_location_path(0);
}
// PathExpr ::= LocationPath
// | FilterExpr
// | FilterExpr '/' RelativeLocationPath
// | FilterExpr '//' RelativeLocationPath
// UnionExpr ::= PathExpr | UnionExpr '|' PathExpr
// UnaryExpr ::= UnionExpr | '-' UnaryExpr
xpath_ast_node* parse_path_or_unary_expression()
{
// Clarification.
// PathExpr begins with either LocationPath or FilterExpr.
// FilterExpr begins with PrimaryExpr
// PrimaryExpr begins with '$' in case of it being a variable reference,
// '(' in case of it being an expression, string literal, number constant or
// function call.
if (_lexer.current() == lex_var_ref || _lexer.current() == lex_open_brace ||
_lexer.current() == lex_quoted_string || _lexer.current() == lex_number ||
_lexer.current() == lex_string)
{
if (_lexer.current() == lex_string)
{
// This is either a function call, or not - if not, we shall proceed with location path
const char_t* state = _lexer.state();
while (PUGI__IS_CHARTYPE(*state, ct_space)) ++state;
if (*state != '(')
return parse_location_path();
// This looks like a function call; however this still can be a node-test. Check it.
if (parse_node_test_type(_lexer.contents()) != nodetest_none)
return parse_location_path();
}
xpath_ast_node* n = parse_filter_expression();
if (!n) return 0;
if (_lexer.current() == lex_slash || _lexer.current() == lex_double_slash)
{
lexeme_t l = _lexer.current();
_lexer.next();
if (l == lex_double_slash)
{
if (n->rettype() != xpath_type_node_set)
return error("Step has to be applied to node set");
n = alloc_node(ast_step, n, axis_descendant_or_self, nodetest_type_node, 0);
if (!n) return 0;
}
// select from location path
return parse_relative_location_path(n);
}
return n;
}
else if (_lexer.current() == lex_minus)
{
_lexer.next();
// precedence 7+ - only parses union expressions
xpath_ast_node* n = parse_expression(7);
if (!n) return 0;
return alloc_node(ast_op_negate, xpath_type_number, n);
}
else
{
return parse_location_path();
}
}
struct binary_op_t
{
ast_type_t asttype;
xpath_value_type rettype;
int precedence;
binary_op_t(): asttype(ast_unknown), rettype(xpath_type_none), precedence(0)
{
}
binary_op_t(ast_type_t asttype_, xpath_value_type rettype_, int precedence_): asttype(asttype_), rettype(rettype_), precedence(precedence_)
{
}
static binary_op_t parse(xpath_lexer& lexer)
{
switch (lexer.current())
{
case lex_string:
if (lexer.contents() == PUGIXML_TEXT("or"))
return binary_op_t(ast_op_or, xpath_type_boolean, 1);
else if (lexer.contents() == PUGIXML_TEXT("and"))
return binary_op_t(ast_op_and, xpath_type_boolean, 2);
else if (lexer.contents() == PUGIXML_TEXT("div"))
return binary_op_t(ast_op_divide, xpath_type_number, 6);
else if (lexer.contents() == PUGIXML_TEXT("mod"))
return binary_op_t(ast_op_mod, xpath_type_number, 6);
else
return binary_op_t();
case lex_equal:
return binary_op_t(ast_op_equal, xpath_type_boolean, 3);
case lex_not_equal:
return binary_op_t(ast_op_not_equal, xpath_type_boolean, 3);
case lex_less:
return binary_op_t(ast_op_less, xpath_type_boolean, 4);
case lex_greater:
return binary_op_t(ast_op_greater, xpath_type_boolean, 4);
case lex_less_or_equal:
return binary_op_t(ast_op_less_or_equal, xpath_type_boolean, 4);
case lex_greater_or_equal:
return binary_op_t(ast_op_greater_or_equal, xpath_type_boolean, 4);
case lex_plus:
return binary_op_t(ast_op_add, xpath_type_number, 5);
case lex_minus:
return binary_op_t(ast_op_subtract, xpath_type_number, 5);
case lex_multiply:
return binary_op_t(ast_op_multiply, xpath_type_number, 6);
case lex_union:
return binary_op_t(ast_op_union, xpath_type_node_set, 7);
default:
return binary_op_t();
}
}
};
xpath_ast_node* parse_expression_rec(xpath_ast_node* lhs, int limit)
{
binary_op_t op = binary_op_t::parse(_lexer);
while (op.asttype != ast_unknown && op.precedence >= limit)
{
_lexer.next();
if (++_depth > xpath_ast_depth_limit)
return error_rec();
xpath_ast_node* rhs = parse_path_or_unary_expression();
if (!rhs) return 0;
binary_op_t nextop = binary_op_t::parse(_lexer);
while (nextop.asttype != ast_unknown && nextop.precedence > op.precedence)
{
rhs = parse_expression_rec(rhs, nextop.precedence);
if (!rhs) return 0;
nextop = binary_op_t::parse(_lexer);
}
if (op.asttype == ast_op_union && (lhs->rettype() != xpath_type_node_set || rhs->rettype() != xpath_type_node_set))
return error("Union operator has to be applied to node sets");
lhs = alloc_node(op.asttype, op.rettype, lhs, rhs);
if (!lhs) return 0;
op = binary_op_t::parse(_lexer);
}
return lhs;
}
// Expr ::= OrExpr
// OrExpr ::= AndExpr | OrExpr 'or' AndExpr
// AndExpr ::= EqualityExpr | AndExpr 'and' EqualityExpr
// EqualityExpr ::= RelationalExpr
// | EqualityExpr '=' RelationalExpr
// | EqualityExpr '!=' RelationalExpr
// RelationalExpr ::= AdditiveExpr
// | RelationalExpr '<' AdditiveExpr
// | RelationalExpr '>' AdditiveExpr
// | RelationalExpr '<=' AdditiveExpr
// | RelationalExpr '>=' AdditiveExpr
// AdditiveExpr ::= MultiplicativeExpr
// | AdditiveExpr '+' MultiplicativeExpr
// | AdditiveExpr '-' MultiplicativeExpr
// MultiplicativeExpr ::= UnaryExpr
// | MultiplicativeExpr '*' UnaryExpr
// | MultiplicativeExpr 'div' UnaryExpr
// | MultiplicativeExpr 'mod' UnaryExpr
xpath_ast_node* parse_expression(int limit = 0)
{
size_t old_depth = _depth;
if (++_depth > xpath_ast_depth_limit)
return error_rec();
xpath_ast_node* n = parse_path_or_unary_expression();
if (!n) return 0;
n = parse_expression_rec(n, limit);
_depth = old_depth;
return n;
}
xpath_parser(const char_t* query, xpath_variable_set* variables, xpath_allocator* alloc, xpath_parse_result* result): _alloc(alloc), _lexer(query), _query(query), _variables(variables), _result(result), _depth(0)
{
}
xpath_ast_node* parse()
{
xpath_ast_node* n = parse_expression();
if (!n) return 0;
assert(_depth == 0);
// check if there are unparsed tokens left
if (_lexer.current() != lex_eof)
return error("Incorrect query");
return n;
}
static xpath_ast_node* parse(const char_t* query, xpath_variable_set* variables, xpath_allocator* alloc, xpath_parse_result* result)
{
xpath_parser parser(query, variables, alloc, result);
return parser.parse();
}
};
struct xpath_query_impl
{
static xpath_query_impl* create()
{
void* memory = xml_memory::allocate(sizeof(xpath_query_impl));
if (!memory) return 0;
return new (memory) xpath_query_impl();
}
static void destroy(xpath_query_impl* impl)
{
// free all allocated pages
impl->alloc.release();
// free allocator memory (with the first page)
xml_memory::deallocate(impl);
}
xpath_query_impl(): root(0), alloc(&block, &oom), oom(false)
{
block.next = 0;
block.capacity = sizeof(block.data);
}
xpath_ast_node* root;
xpath_allocator alloc;
xpath_memory_block block;
bool oom;
};
PUGI__FN impl::xpath_ast_node* evaluate_node_set_prepare(xpath_query_impl* impl)
{
if (!impl) return 0;
if (impl->root->rettype() != xpath_type_node_set)
{
#ifdef PUGIXML_NO_EXCEPTIONS
return 0;
#else
xpath_parse_result res;
res.error = "Expression does not evaluate to node set";
throw xpath_exception(res);
#endif
}
return impl->root;
}
PUGI__NS_END
namespace pugi
{
#ifndef PUGIXML_NO_EXCEPTIONS
PUGI__FN xpath_exception::xpath_exception(const xpath_parse_result& result_): _result(result_)
{
assert(_result.error);
}
PUGI__FN const char* xpath_exception::what() const throw()
{
return _result.error;
}
PUGI__FN const xpath_parse_result& xpath_exception::result() const
{
return _result;
}
#endif
PUGI__FN xpath_node::xpath_node()
{
}
PUGI__FN xpath_node::xpath_node(const xml_node& node_): _node(node_)
{
}
PUGI__FN xpath_node::xpath_node(const xml_attribute& attribute_, const xml_node& parent_): _node(attribute_ ? parent_ : xml_node()), _attribute(attribute_)
{
}
PUGI__FN xml_node xpath_node::node() const
{
return _attribute ? xml_node() : _node;
}
PUGI__FN xml_attribute xpath_node::attribute() const
{
return _attribute;
}
PUGI__FN xml_node xpath_node::parent() const
{
return _attribute ? _node : _node.parent();
}
PUGI__FN static void unspecified_bool_xpath_node(xpath_node***)
{
}
PUGI__FN xpath_node::operator xpath_node::unspecified_bool_type() const
{
return (_node || _attribute) ? unspecified_bool_xpath_node : 0;
}
PUGI__FN bool xpath_node::operator!() const
{
return !(_node || _attribute);
}
PUGI__FN bool xpath_node::operator==(const xpath_node& n) const
{
return _node == n._node && _attribute == n._attribute;
}
PUGI__FN bool xpath_node::operator!=(const xpath_node& n) const
{
return _node != n._node || _attribute != n._attribute;
}
#ifdef __BORLANDC__
PUGI__FN bool operator&&(const xpath_node& lhs, bool rhs)
{
return (bool)lhs && rhs;
}
PUGI__FN bool operator||(const xpath_node& lhs, bool rhs)
{
return (bool)lhs || rhs;
}
#endif
PUGI__FN void xpath_node_set::_assign(const_iterator begin_, const_iterator end_, type_t type_)
{
assert(begin_ <= end_);
size_t size_ = static_cast<size_t>(end_ - begin_);
// use internal buffer for 0 or 1 elements, heap buffer otherwise
xpath_node* storage = (size_ <= 1) ? _storage : static_cast<xpath_node*>(impl::xml_memory::allocate(size_ * sizeof(xpath_node)));
if (!storage)
{
#ifdef PUGIXML_NO_EXCEPTIONS
return;
#else
throw std::bad_alloc();
#endif
}
// deallocate old buffer
if (_begin != _storage)
impl::xml_memory::deallocate(_begin);
// size check is necessary because for begin_ = end_ = nullptr, memcpy is UB
if (size_)
memcpy(storage, begin_, size_ * sizeof(xpath_node));
_begin = storage;
_end = storage + size_;
_type = type_;
}
#ifdef PUGIXML_HAS_MOVE
PUGI__FN void xpath_node_set::_move(xpath_node_set& rhs) PUGIXML_NOEXCEPT
{
_type = rhs._type;
_storage[0] = rhs._storage[0];
_begin = (rhs._begin == rhs._storage) ? _storage : rhs._begin;
_end = _begin + (rhs._end - rhs._begin);
rhs._type = type_unsorted;
rhs._begin = rhs._storage;
rhs._end = rhs._storage;
}
#endif
PUGI__FN xpath_node_set::xpath_node_set(): _type(type_unsorted), _begin(_storage), _end(_storage)
{
}
PUGI__FN xpath_node_set::xpath_node_set(const_iterator begin_, const_iterator end_, type_t type_): _type(type_unsorted), _begin(_storage), _end(_storage)
{
_assign(begin_, end_, type_);
}
PUGI__FN xpath_node_set::~xpath_node_set()
{
if (_begin != _storage)
impl::xml_memory::deallocate(_begin);
}
PUGI__FN xpath_node_set::xpath_node_set(const xpath_node_set& ns): _type(type_unsorted), _begin(_storage), _end(_storage)
{
_assign(ns._begin, ns._end, ns._type);
}
PUGI__FN xpath_node_set& xpath_node_set::operator=(const xpath_node_set& ns)
{
if (this == &ns) return *this;
_assign(ns._begin, ns._end, ns._type);
return *this;
}
#ifdef PUGIXML_HAS_MOVE
PUGI__FN xpath_node_set::xpath_node_set(xpath_node_set&& rhs) PUGIXML_NOEXCEPT: _type(type_unsorted), _begin(_storage), _end(_storage)
{
_move(rhs);
}
PUGI__FN xpath_node_set& xpath_node_set::operator=(xpath_node_set&& rhs) PUGIXML_NOEXCEPT
{
if (this == &rhs) return *this;
if (_begin != _storage)
impl::xml_memory::deallocate(_begin);
_move(rhs);
return *this;
}
#endif
PUGI__FN xpath_node_set::type_t xpath_node_set::type() const
{
return _type;
}
PUGI__FN size_t xpath_node_set::size() const
{
return _end - _begin;
}
PUGI__FN bool xpath_node_set::empty() const
{
return _begin == _end;
}
PUGI__FN const xpath_node& xpath_node_set::operator[](size_t index) const
{
assert(index < size());
return _begin[index];
}
PUGI__FN xpath_node_set::const_iterator xpath_node_set::begin() const
{
return _begin;
}
PUGI__FN xpath_node_set::const_iterator xpath_node_set::end() const
{
return _end;
}
PUGI__FN void xpath_node_set::sort(bool reverse)
{
_type = impl::xpath_sort(_begin, _end, _type, reverse);
}
PUGI__FN xpath_node xpath_node_set::first() const
{
return impl::xpath_first(_begin, _end, _type);
}
PUGI__FN xpath_parse_result::xpath_parse_result(): error("Internal error"), offset(0)
{
}
PUGI__FN xpath_parse_result::operator bool() const
{
return error == 0;
}
PUGI__FN const char* xpath_parse_result::description() const
{
return error ? error : "No error";
}
PUGI__FN xpath_variable::xpath_variable(xpath_value_type type_): _type(type_), _next(0)
{
}
PUGI__FN const char_t* xpath_variable::name() const
{
switch (_type)
{
case xpath_type_node_set:
return static_cast<const impl::xpath_variable_node_set*>(this)->name;
case xpath_type_number:
return static_cast<const impl::xpath_variable_number*>(this)->name;
case xpath_type_string:
return static_cast<const impl::xpath_variable_string*>(this)->name;
case xpath_type_boolean:
return static_cast<const impl::xpath_variable_boolean*>(this)->name;
default:
assert(false && "Invalid variable type"); // unreachable
return 0;
}
}
PUGI__FN xpath_value_type xpath_variable::type() const
{
return _type;
}
PUGI__FN bool xpath_variable::get_boolean() const
{
return (_type == xpath_type_boolean) ? static_cast<const impl::xpath_variable_boolean*>(this)->value : false;
}
PUGI__FN double xpath_variable::get_number() const
{
return (_type == xpath_type_number) ? static_cast<const impl::xpath_variable_number*>(this)->value : impl::gen_nan();
}
PUGI__FN const char_t* xpath_variable::get_string() const
{
const char_t* value = (_type == xpath_type_string) ? static_cast<const impl::xpath_variable_string*>(this)->value : 0;
return value ? value : PUGIXML_TEXT("");
}
PUGI__FN const xpath_node_set& xpath_variable::get_node_set() const
{
return (_type == xpath_type_node_set) ? static_cast<const impl::xpath_variable_node_set*>(this)->value : impl::dummy_node_set;
}
PUGI__FN bool xpath_variable::set(bool value)
{
if (_type != xpath_type_boolean) return false;
static_cast<impl::xpath_variable_boolean*>(this)->value = value;
return true;
}
PUGI__FN bool xpath_variable::set(double value)
{
if (_type != xpath_type_number) return false;
static_cast<impl::xpath_variable_number*>(this)->value = value;
return true;
}
PUGI__FN bool xpath_variable::set(const char_t* value)
{
if (_type != xpath_type_string) return false;
impl::xpath_variable_string* var = static_cast<impl::xpath_variable_string*>(this);
// duplicate string
size_t size = (impl::strlength(value) + 1) * sizeof(char_t);
char_t* copy = static_cast<char_t*>(impl::xml_memory::allocate(size));
if (!copy) return false;
memcpy(copy, value, size);
// replace old string
if (var->value) impl::xml_memory::deallocate(var->value);
var->value = copy;
return true;
}
PUGI__FN bool xpath_variable::set(const xpath_node_set& value)
{
if (_type != xpath_type_node_set) return false;
static_cast<impl::xpath_variable_node_set*>(this)->value = value;
return true;
}
PUGI__FN xpath_variable_set::xpath_variable_set()
{
for (size_t i = 0; i < sizeof(_data) / sizeof(_data[0]); ++i)
_data[i] = 0;
}
PUGI__FN xpath_variable_set::~xpath_variable_set()
{
for (size_t i = 0; i < sizeof(_data) / sizeof(_data[0]); ++i)
_destroy(_data[i]);
}
PUGI__FN xpath_variable_set::xpath_variable_set(const xpath_variable_set& rhs)
{
for (size_t i = 0; i < sizeof(_data) / sizeof(_data[0]); ++i)
_data[i] = 0;
_assign(rhs);
}
PUGI__FN xpath_variable_set& xpath_variable_set::operator=(const xpath_variable_set& rhs)
{
if (this == &rhs) return *this;
_assign(rhs);
return *this;
}
#ifdef PUGIXML_HAS_MOVE
PUGI__FN xpath_variable_set::xpath_variable_set(xpath_variable_set&& rhs) PUGIXML_NOEXCEPT
{
for (size_t i = 0; i < sizeof(_data) / sizeof(_data[0]); ++i)
{
_data[i] = rhs._data[i];
rhs._data[i] = 0;
}
}
PUGI__FN xpath_variable_set& xpath_variable_set::operator=(xpath_variable_set&& rhs) PUGIXML_NOEXCEPT
{
for (size_t i = 0; i < sizeof(_data) / sizeof(_data[0]); ++i)
{
_destroy(_data[i]);
_data[i] = rhs._data[i];
rhs._data[i] = 0;
}
return *this;
}
#endif
PUGI__FN void xpath_variable_set::_assign(const xpath_variable_set& rhs)
{
xpath_variable_set temp;
for (size_t i = 0; i < sizeof(_data) / sizeof(_data[0]); ++i)
if (rhs._data[i] && !_clone(rhs._data[i], &temp._data[i]))
return;
_swap(temp);
}
PUGI__FN void xpath_variable_set::_swap(xpath_variable_set& rhs)
{
for (size_t i = 0; i < sizeof(_data) / sizeof(_data[0]); ++i)
{
xpath_variable* chain = _data[i];
_data[i] = rhs._data[i];
rhs._data[i] = chain;
}
}
PUGI__FN xpath_variable* xpath_variable_set::_find(const char_t* name) const
{
const size_t hash_size = sizeof(_data) / sizeof(_data[0]);
size_t hash = impl::hash_string(name) % hash_size;
// look for existing variable
for (xpath_variable* var = _data[hash]; var; var = var->_next)
if (impl::strequal(var->name(), name))
return var;
return 0;
}
PUGI__FN bool xpath_variable_set::_clone(xpath_variable* var, xpath_variable** out_result)
{
xpath_variable* last = 0;
while (var)
{
// allocate storage for new variable
xpath_variable* nvar = impl::new_xpath_variable(var->_type, var->name());
if (!nvar) return false;
// link the variable to the result immediately to handle failures gracefully
if (last)
last->_next = nvar;
else
*out_result = nvar;
last = nvar;
// copy the value; this can fail due to out-of-memory conditions
if (!impl::copy_xpath_variable(nvar, var)) return false;
var = var->_next;
}
return true;
}
PUGI__FN void xpath_variable_set::_destroy(xpath_variable* var)
{
while (var)
{
xpath_variable* next = var->_next;
impl::delete_xpath_variable(var->_type, var);
var = next;
}
}
PUGI__FN xpath_variable* xpath_variable_set::add(const char_t* name, xpath_value_type type)
{
const size_t hash_size = sizeof(_data) / sizeof(_data[0]);
size_t hash = impl::hash_string(name) % hash_size;
// look for existing variable
for (xpath_variable* var = _data[hash]; var; var = var->_next)
if (impl::strequal(var->name(), name))
return var->type() == type ? var : 0;
// add new variable
xpath_variable* result = impl::new_xpath_variable(type, name);
if (result)
{
result->_next = _data[hash];
_data[hash] = result;
}
return result;
}
PUGI__FN bool xpath_variable_set::set(const char_t* name, bool value)
{
xpath_variable* var = add(name, xpath_type_boolean);
return var ? var->set(value) : false;
}
PUGI__FN bool xpath_variable_set::set(const char_t* name, double value)
{
xpath_variable* var = add(name, xpath_type_number);
return var ? var->set(value) : false;
}
PUGI__FN bool xpath_variable_set::set(const char_t* name, const char_t* value)
{
xpath_variable* var = add(name, xpath_type_string);
return var ? var->set(value) : false;
}
PUGI__FN bool xpath_variable_set::set(const char_t* name, const xpath_node_set& value)
{
xpath_variable* var = add(name, xpath_type_node_set);
return var ? var->set(value) : false;
}
PUGI__FN xpath_variable* xpath_variable_set::get(const char_t* name)
{
return _find(name);
}
PUGI__FN const xpath_variable* xpath_variable_set::get(const char_t* name) const
{
return _find(name);
}
PUGI__FN xpath_query::xpath_query(const char_t* query, xpath_variable_set* variables): _impl(0)
{
impl::xpath_query_impl* qimpl = impl::xpath_query_impl::create();
if (!qimpl)
{
#ifdef PUGIXML_NO_EXCEPTIONS
_result.error = "Out of memory";
#else
throw std::bad_alloc();
#endif
}
else
{
using impl::auto_deleter; // MSVC7 workaround
auto_deleter<impl::xpath_query_impl> impl(qimpl, impl::xpath_query_impl::destroy);
qimpl->root = impl::xpath_parser::parse(query, variables, &qimpl->alloc, &_result);
if (qimpl->root)
{
qimpl->root->optimize(&qimpl->alloc);
_impl = impl.release();
_result.error = 0;
}
else
{
#ifdef PUGIXML_NO_EXCEPTIONS
if (qimpl->oom) _result.error = "Out of memory";
#else
if (qimpl->oom) throw std::bad_alloc();
throw xpath_exception(_result);
#endif
}
}
}
PUGI__FN xpath_query::xpath_query(): _impl(0)
{
}
PUGI__FN xpath_query::~xpath_query()
{
if (_impl)
impl::xpath_query_impl::destroy(static_cast<impl::xpath_query_impl*>(_impl));
}
#ifdef PUGIXML_HAS_MOVE
PUGI__FN xpath_query::xpath_query(xpath_query&& rhs) PUGIXML_NOEXCEPT
{
_impl = rhs._impl;
_result = rhs._result;
rhs._impl = 0;
rhs._result = xpath_parse_result();
}
PUGI__FN xpath_query& xpath_query::operator=(xpath_query&& rhs) PUGIXML_NOEXCEPT
{
if (this == &rhs) return *this;
if (_impl)
impl::xpath_query_impl::destroy(static_cast<impl::xpath_query_impl*>(_impl));
_impl = rhs._impl;
_result = rhs._result;
rhs._impl = 0;
rhs._result = xpath_parse_result();
return *this;
}
#endif
PUGI__FN xpath_value_type xpath_query::return_type() const
{
if (!_impl) return xpath_type_none;
return static_cast<impl::xpath_query_impl*>(_impl)->root->rettype();
}
PUGI__FN bool xpath_query::evaluate_boolean(const xpath_node& n) const
{
if (!_impl) return false;
impl::xpath_context c(n, 1, 1);
impl::xpath_stack_data sd;
bool r = static_cast<impl::xpath_query_impl*>(_impl)->root->eval_boolean(c, sd.stack);
if (sd.oom)
{
#ifdef PUGIXML_NO_EXCEPTIONS
return false;
#else
throw std::bad_alloc();
#endif
}
return r;
}
PUGI__FN double xpath_query::evaluate_number(const xpath_node& n) const
{
if (!_impl) return impl::gen_nan();
impl::xpath_context c(n, 1, 1);
impl::xpath_stack_data sd;
double r = static_cast<impl::xpath_query_impl*>(_impl)->root->eval_number(c, sd.stack);
if (sd.oom)
{
#ifdef PUGIXML_NO_EXCEPTIONS
return impl::gen_nan();
#else
throw std::bad_alloc();
#endif
}
return r;
}
#ifndef PUGIXML_NO_STL
PUGI__FN string_t xpath_query::evaluate_string(const xpath_node& n) const
{
if (!_impl) return string_t();
impl::xpath_context c(n, 1, 1);
impl::xpath_stack_data sd;
impl::xpath_string r = static_cast<impl::xpath_query_impl*>(_impl)->root->eval_string(c, sd.stack);
if (sd.oom)
{
#ifdef PUGIXML_NO_EXCEPTIONS
return string_t();
#else
throw std::bad_alloc();
#endif
}
return string_t(r.c_str(), r.length());
}
#endif
PUGI__FN size_t xpath_query::evaluate_string(char_t* buffer, size_t capacity, const xpath_node& n) const
{
impl::xpath_context c(n, 1, 1);
impl::xpath_stack_data sd;
impl::xpath_string r = _impl ? static_cast<impl::xpath_query_impl*>(_impl)->root->eval_string(c, sd.stack) : impl::xpath_string();
if (sd.oom)
{
#ifdef PUGIXML_NO_EXCEPTIONS
r = impl::xpath_string();
#else
throw std::bad_alloc();
#endif
}
size_t full_size = r.length() + 1;
if (capacity > 0)
{
size_t size = (full_size < capacity) ? full_size : capacity;
assert(size > 0);
memcpy(buffer, r.c_str(), (size - 1) * sizeof(char_t));
buffer[size - 1] = 0;
}
return full_size;
}
PUGI__FN xpath_node_set xpath_query::evaluate_node_set(const xpath_node& n) const
{
impl::xpath_ast_node* root = impl::evaluate_node_set_prepare(static_cast<impl::xpath_query_impl*>(_impl));
if (!root) return xpath_node_set();
impl::xpath_context c(n, 1, 1);
impl::xpath_stack_data sd;
impl::xpath_node_set_raw r = root->eval_node_set(c, sd.stack, impl::nodeset_eval_all);
if (sd.oom)
{
#ifdef PUGIXML_NO_EXCEPTIONS
return xpath_node_set();
#else
throw std::bad_alloc();
#endif
}
return xpath_node_set(r.begin(), r.end(), r.type());
}
PUGI__FN xpath_node xpath_query::evaluate_node(const xpath_node& n) const
{
impl::xpath_ast_node* root = impl::evaluate_node_set_prepare(static_cast<impl::xpath_query_impl*>(_impl));
if (!root) return xpath_node();
impl::xpath_context c(n, 1, 1);
impl::xpath_stack_data sd;
impl::xpath_node_set_raw r = root->eval_node_set(c, sd.stack, impl::nodeset_eval_first);
if (sd.oom)
{
#ifdef PUGIXML_NO_EXCEPTIONS
return xpath_node();
#else
throw std::bad_alloc();
#endif
}
return r.first();
}
PUGI__FN const xpath_parse_result& xpath_query::result() const
{
return _result;
}
PUGI__FN static void unspecified_bool_xpath_query(xpath_query***)
{
}
PUGI__FN xpath_query::operator xpath_query::unspecified_bool_type() const
{
return _impl ? unspecified_bool_xpath_query : 0;
}
PUGI__FN bool xpath_query::operator!() const
{
return !_impl;
}
PUGI__FN xpath_node xml_node::select_node(const char_t* query, xpath_variable_set* variables) const
{
xpath_query q(query, variables);
return q.evaluate_node(*this);
}
PUGI__FN xpath_node xml_node::select_node(const xpath_query& query) const
{
return query.evaluate_node(*this);
}
PUGI__FN xpath_node_set xml_node::select_nodes(const char_t* query, xpath_variable_set* variables) const
{
xpath_query q(query, variables);
return q.evaluate_node_set(*this);
}
PUGI__FN xpath_node_set xml_node::select_nodes(const xpath_query& query) const
{
return query.evaluate_node_set(*this);
}
PUGI__FN xpath_node xml_node::select_single_node(const char_t* query, xpath_variable_set* variables) const
{
xpath_query q(query, variables);
return q.evaluate_node(*this);
}
PUGI__FN xpath_node xml_node::select_single_node(const xpath_query& query) const
{
return query.evaluate_node(*this);
}
}
#endif
#ifdef __BORLANDC__
# pragma option pop
#endif
// Intel C++ does not properly keep warning state for function templates,
// so popping warning state at the end of translation unit leads to warnings in the middle.
#if defined(_MSC_VER) && !defined(__INTEL_COMPILER)
# pragma warning(pop)
#endif
#if defined(_MSC_VER) && defined(__c2__)
# pragma clang diagnostic pop
#endif
// Undefine all local macros (makes sure we're not leaking macros in header-only mode)
#undef PUGI__NO_INLINE
#undef PUGI__UNLIKELY
#undef PUGI__STATIC_ASSERT
#undef PUGI__DMC_VOLATILE
#undef PUGI__UNSIGNED_OVERFLOW
#undef PUGI__MSVC_CRT_VERSION
#undef PUGI__SNPRINTF
#undef PUGI__NS_BEGIN
#undef PUGI__NS_END
#undef PUGI__FN
#undef PUGI__FN_NO_INLINE
#undef PUGI__GETHEADER_IMPL
#undef PUGI__GETPAGE_IMPL
#undef PUGI__GETPAGE
#undef PUGI__NODETYPE
#undef PUGI__IS_CHARTYPE_IMPL
#undef PUGI__IS_CHARTYPE
#undef PUGI__IS_CHARTYPEX
#undef PUGI__ENDSWITH
#undef PUGI__SKIPWS
#undef PUGI__OPTSET
#undef PUGI__PUSHNODE
#undef PUGI__POPNODE
#undef PUGI__SCANFOR
#undef PUGI__SCANWHILE
#undef PUGI__SCANWHILE_UNROLL
#undef PUGI__ENDSEG
#undef PUGI__THROW_ERROR
#undef PUGI__CHECK_ERROR
#endif
/**
* Copyright (c) 2006-2019 Arseny Kapoulkine
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/