mirror of https://github.com/axmolengine/axmol.git
1463 lines
49 KiB
C++
1463 lines
49 KiB
C++
|
|
#include "config.h"
|
|
|
|
#include "hrtf.h"
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <cassert>
|
|
#include <cctype>
|
|
#include <cmath>
|
|
#include <cstdint>
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <fstream>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <mutex>
|
|
#include <numeric>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
#include "albit.h"
|
|
#include "albyte.h"
|
|
#include "alfstream.h"
|
|
#include "almalloc.h"
|
|
#include "alnumbers.h"
|
|
#include "alnumeric.h"
|
|
#include "aloptional.h"
|
|
#include "alspan.h"
|
|
#include "ambidefs.h"
|
|
#include "filters/splitter.h"
|
|
#include "helpers.h"
|
|
#include "logging.h"
|
|
#include "mixer/hrtfdefs.h"
|
|
#include "opthelpers.h"
|
|
#include "polyphase_resampler.h"
|
|
#include "vector.h"
|
|
|
|
|
|
namespace {
|
|
|
|
struct HrtfEntry {
|
|
std::string mDispName;
|
|
std::string mFilename;
|
|
};
|
|
|
|
struct LoadedHrtf {
|
|
std::string mFilename;
|
|
std::unique_ptr<HrtfStore> mEntry;
|
|
};
|
|
|
|
/* Data set limits must be the same as or more flexible than those defined in
|
|
* the makemhr utility.
|
|
*/
|
|
constexpr uint MinFdCount{1};
|
|
constexpr uint MaxFdCount{16};
|
|
|
|
constexpr uint MinFdDistance{50};
|
|
constexpr uint MaxFdDistance{2500};
|
|
|
|
constexpr uint MinEvCount{5};
|
|
constexpr uint MaxEvCount{181};
|
|
|
|
constexpr uint MinAzCount{1};
|
|
constexpr uint MaxAzCount{255};
|
|
|
|
constexpr uint MaxHrirDelay{HrtfHistoryLength - 1};
|
|
|
|
constexpr uint HrirDelayFracBits{2};
|
|
constexpr uint HrirDelayFracOne{1 << HrirDelayFracBits};
|
|
constexpr uint HrirDelayFracHalf{HrirDelayFracOne >> 1};
|
|
|
|
static_assert(MaxHrirDelay*HrirDelayFracOne < 256, "MAX_HRIR_DELAY or DELAY_FRAC too large");
|
|
|
|
constexpr char magicMarker00[8]{'M','i','n','P','H','R','0','0'};
|
|
constexpr char magicMarker01[8]{'M','i','n','P','H','R','0','1'};
|
|
constexpr char magicMarker02[8]{'M','i','n','P','H','R','0','2'};
|
|
constexpr char magicMarker03[8]{'M','i','n','P','H','R','0','3'};
|
|
|
|
/* First value for pass-through coefficients (remaining are 0), used for omni-
|
|
* directional sounds. */
|
|
constexpr auto PassthruCoeff = static_cast<float>(1.0/al::numbers::sqrt2);
|
|
|
|
std::mutex LoadedHrtfLock;
|
|
al::vector<LoadedHrtf> LoadedHrtfs;
|
|
|
|
std::mutex EnumeratedHrtfLock;
|
|
al::vector<HrtfEntry> EnumeratedHrtfs;
|
|
|
|
|
|
class databuf final : public std::streambuf {
|
|
int_type underflow() override
|
|
{ return traits_type::eof(); }
|
|
|
|
pos_type seekoff(off_type offset, std::ios_base::seekdir whence, std::ios_base::openmode mode) override
|
|
{
|
|
if((mode&std::ios_base::out) || !(mode&std::ios_base::in))
|
|
return traits_type::eof();
|
|
|
|
char_type *cur;
|
|
switch(whence)
|
|
{
|
|
case std::ios_base::beg:
|
|
if(offset < 0 || offset > egptr()-eback())
|
|
return traits_type::eof();
|
|
cur = eback() + offset;
|
|
break;
|
|
|
|
case std::ios_base::cur:
|
|
if((offset >= 0 && offset > egptr()-gptr()) ||
|
|
(offset < 0 && -offset > gptr()-eback()))
|
|
return traits_type::eof();
|
|
cur = gptr() + offset;
|
|
break;
|
|
|
|
case std::ios_base::end:
|
|
if(offset > 0 || -offset > egptr()-eback())
|
|
return traits_type::eof();
|
|
cur = egptr() + offset;
|
|
break;
|
|
|
|
default:
|
|
return traits_type::eof();
|
|
}
|
|
|
|
setg(eback(), cur, egptr());
|
|
return cur - eback();
|
|
}
|
|
|
|
pos_type seekpos(pos_type pos, std::ios_base::openmode mode) override
|
|
{
|
|
// Simplified version of seekoff
|
|
if((mode&std::ios_base::out) || !(mode&std::ios_base::in))
|
|
return traits_type::eof();
|
|
|
|
if(pos < 0 || pos > egptr()-eback())
|
|
return traits_type::eof();
|
|
|
|
setg(eback(), eback() + static_cast<size_t>(pos), egptr());
|
|
return pos;
|
|
}
|
|
|
|
public:
|
|
databuf(const char_type *start_, const char_type *end_) noexcept
|
|
{
|
|
setg(const_cast<char_type*>(start_), const_cast<char_type*>(start_),
|
|
const_cast<char_type*>(end_));
|
|
}
|
|
};
|
|
|
|
class idstream final : public std::istream {
|
|
databuf mStreamBuf;
|
|
|
|
public:
|
|
idstream(const char *start_, const char *end_)
|
|
: std::istream{nullptr}, mStreamBuf{start_, end_}
|
|
{ init(&mStreamBuf); }
|
|
};
|
|
|
|
|
|
struct IdxBlend { uint idx; float blend; };
|
|
/* Calculate the elevation index given the polar elevation in radians. This
|
|
* will return an index between 0 and (evcount - 1).
|
|
*/
|
|
IdxBlend CalcEvIndex(uint evcount, float ev)
|
|
{
|
|
ev = (al::numbers::pi_v<float>*0.5f + ev) * static_cast<float>(evcount-1) /
|
|
al::numbers::pi_v<float>;
|
|
uint idx{float2uint(ev)};
|
|
|
|
return IdxBlend{minu(idx, evcount-1), ev-static_cast<float>(idx)};
|
|
}
|
|
|
|
/* Calculate the azimuth index given the polar azimuth in radians. This will
|
|
* return an index between 0 and (azcount - 1).
|
|
*/
|
|
IdxBlend CalcAzIndex(uint azcount, float az)
|
|
{
|
|
az = (al::numbers::pi_v<float>*2.0f + az) * static_cast<float>(azcount) /
|
|
(al::numbers::pi_v<float>*2.0f);
|
|
uint idx{float2uint(az)};
|
|
|
|
return IdxBlend{idx%azcount, az-static_cast<float>(idx)};
|
|
}
|
|
|
|
} // namespace
|
|
|
|
|
|
/* Calculates static HRIR coefficients and delays for the given polar elevation
|
|
* and azimuth in radians. The coefficients are normalized.
|
|
*/
|
|
void GetHrtfCoeffs(const HrtfStore *Hrtf, float elevation, float azimuth, float distance,
|
|
float spread, HrirArray &coeffs, const al::span<uint,2> delays)
|
|
{
|
|
const float dirfact{1.0f - (al::numbers::inv_pi_v<float>/2.0f * spread)};
|
|
|
|
const auto *field = Hrtf->field;
|
|
const auto *field_end = field + Hrtf->fdCount-1;
|
|
size_t ebase{0};
|
|
while(distance < field->distance && field != field_end)
|
|
{
|
|
ebase += field->evCount;
|
|
++field;
|
|
}
|
|
|
|
/* Calculate the elevation indices. */
|
|
const auto elev0 = CalcEvIndex(field->evCount, elevation);
|
|
const size_t elev1_idx{minu(elev0.idx+1, field->evCount-1)};
|
|
const size_t ir0offset{Hrtf->elev[ebase + elev0.idx].irOffset};
|
|
const size_t ir1offset{Hrtf->elev[ebase + elev1_idx].irOffset};
|
|
|
|
/* Calculate azimuth indices. */
|
|
const auto az0 = CalcAzIndex(Hrtf->elev[ebase + elev0.idx].azCount, azimuth);
|
|
const auto az1 = CalcAzIndex(Hrtf->elev[ebase + elev1_idx].azCount, azimuth);
|
|
|
|
/* Calculate the HRIR indices to blend. */
|
|
const size_t idx[4]{
|
|
ir0offset + az0.idx,
|
|
ir0offset + ((az0.idx+1) % Hrtf->elev[ebase + elev0.idx].azCount),
|
|
ir1offset + az1.idx,
|
|
ir1offset + ((az1.idx+1) % Hrtf->elev[ebase + elev1_idx].azCount)
|
|
};
|
|
|
|
/* Calculate bilinear blending weights, attenuated according to the
|
|
* directional panning factor.
|
|
*/
|
|
const float blend[4]{
|
|
(1.0f-elev0.blend) * (1.0f-az0.blend) * dirfact,
|
|
(1.0f-elev0.blend) * ( az0.blend) * dirfact,
|
|
( elev0.blend) * (1.0f-az1.blend) * dirfact,
|
|
( elev0.blend) * ( az1.blend) * dirfact
|
|
};
|
|
|
|
/* Calculate the blended HRIR delays. */
|
|
float d{Hrtf->delays[idx[0]][0]*blend[0] + Hrtf->delays[idx[1]][0]*blend[1] +
|
|
Hrtf->delays[idx[2]][0]*blend[2] + Hrtf->delays[idx[3]][0]*blend[3]};
|
|
delays[0] = fastf2u(d * float{1.0f/HrirDelayFracOne});
|
|
d = Hrtf->delays[idx[0]][1]*blend[0] + Hrtf->delays[idx[1]][1]*blend[1] +
|
|
Hrtf->delays[idx[2]][1]*blend[2] + Hrtf->delays[idx[3]][1]*blend[3];
|
|
delays[1] = fastf2u(d * float{1.0f/HrirDelayFracOne});
|
|
|
|
/* Calculate the blended HRIR coefficients. */
|
|
float *coeffout{al::assume_aligned<16>(&coeffs[0][0])};
|
|
coeffout[0] = PassthruCoeff * (1.0f-dirfact);
|
|
coeffout[1] = PassthruCoeff * (1.0f-dirfact);
|
|
std::fill_n(coeffout+2, size_t{HrirLength-1}*2, 0.0f);
|
|
for(size_t c{0};c < 4;c++)
|
|
{
|
|
const float *srccoeffs{al::assume_aligned<16>(Hrtf->coeffs[idx[c]][0].data())};
|
|
const float mult{blend[c]};
|
|
auto blend_coeffs = [mult](const float src, const float coeff) noexcept -> float
|
|
{ return src*mult + coeff; };
|
|
std::transform(srccoeffs, srccoeffs + HrirLength*2, coeffout, coeffout, blend_coeffs);
|
|
}
|
|
}
|
|
|
|
|
|
std::unique_ptr<DirectHrtfState> DirectHrtfState::Create(size_t num_chans)
|
|
{ return std::unique_ptr<DirectHrtfState>{new(FamCount(num_chans)) DirectHrtfState{num_chans}}; }
|
|
|
|
void DirectHrtfState::build(const HrtfStore *Hrtf, const uint irSize,
|
|
const al::span<const AngularPoint> AmbiPoints, const float (*AmbiMatrix)[MaxAmbiChannels],
|
|
const float XOverFreq, const al::span<const float,MaxAmbiOrder+1> AmbiOrderHFGain)
|
|
{
|
|
using double2 = std::array<double,2>;
|
|
struct ImpulseResponse {
|
|
const ConstHrirSpan hrir;
|
|
uint ldelay, rdelay;
|
|
};
|
|
|
|
const double xover_norm{double{XOverFreq} / Hrtf->sampleRate};
|
|
for(size_t i{0};i < mChannels.size();++i)
|
|
{
|
|
const size_t order{AmbiIndex::OrderFromChannel()[i]};
|
|
mChannels[i].mSplitter.init(static_cast<float>(xover_norm));
|
|
mChannels[i].mHfScale = AmbiOrderHFGain[order];
|
|
}
|
|
|
|
uint min_delay{HrtfHistoryLength*HrirDelayFracOne}, max_delay{0};
|
|
al::vector<ImpulseResponse> impres; impres.reserve(AmbiPoints.size());
|
|
auto calc_res = [Hrtf,&max_delay,&min_delay](const AngularPoint &pt) -> ImpulseResponse
|
|
{
|
|
auto &field = Hrtf->field[0];
|
|
const auto elev0 = CalcEvIndex(field.evCount, pt.Elev.value);
|
|
const size_t elev1_idx{minu(elev0.idx+1, field.evCount-1)};
|
|
const size_t ir0offset{Hrtf->elev[elev0.idx].irOffset};
|
|
const size_t ir1offset{Hrtf->elev[elev1_idx].irOffset};
|
|
|
|
const auto az0 = CalcAzIndex(Hrtf->elev[elev0.idx].azCount, pt.Azim.value);
|
|
const auto az1 = CalcAzIndex(Hrtf->elev[elev1_idx].azCount, pt.Azim.value);
|
|
|
|
const size_t idx[4]{
|
|
ir0offset + az0.idx,
|
|
ir0offset + ((az0.idx+1) % Hrtf->elev[elev0.idx].azCount),
|
|
ir1offset + az1.idx,
|
|
ir1offset + ((az1.idx+1) % Hrtf->elev[elev1_idx].azCount)
|
|
};
|
|
|
|
const std::array<double,4> blend{{
|
|
(1.0-elev0.blend) * (1.0-az0.blend),
|
|
(1.0-elev0.blend) * ( az0.blend),
|
|
( elev0.blend) * (1.0-az1.blend),
|
|
( elev0.blend) * ( az1.blend)
|
|
}};
|
|
|
|
/* The largest blend factor serves as the closest HRIR. */
|
|
const size_t irOffset{idx[std::max_element(blend.begin(), blend.end()) - blend.begin()]};
|
|
ImpulseResponse res{Hrtf->coeffs[irOffset],
|
|
Hrtf->delays[irOffset][0], Hrtf->delays[irOffset][1]};
|
|
|
|
min_delay = minu(min_delay, minu(res.ldelay, res.rdelay));
|
|
max_delay = maxu(max_delay, maxu(res.ldelay, res.rdelay));
|
|
|
|
return res;
|
|
};
|
|
std::transform(AmbiPoints.begin(), AmbiPoints.end(), std::back_inserter(impres), calc_res);
|
|
auto hrir_delay_round = [](const uint d) noexcept -> uint
|
|
{ return (d+HrirDelayFracHalf) >> HrirDelayFracBits; };
|
|
|
|
TRACE("Min delay: %.2f, max delay: %.2f, FIR length: %u\n",
|
|
min_delay/double{HrirDelayFracOne}, max_delay/double{HrirDelayFracOne}, irSize);
|
|
|
|
const bool per_hrir_min{mChannels.size() > AmbiChannelsFromOrder(1)};
|
|
auto tmpres = al::vector<std::array<double2,HrirLength>>(mChannels.size());
|
|
max_delay = 0;
|
|
for(size_t c{0u};c < AmbiPoints.size();++c)
|
|
{
|
|
const ConstHrirSpan hrir{impres[c].hrir};
|
|
const uint base_delay{per_hrir_min ? minu(impres[c].ldelay, impres[c].rdelay) : min_delay};
|
|
const uint ldelay{hrir_delay_round(impres[c].ldelay - base_delay)};
|
|
const uint rdelay{hrir_delay_round(impres[c].rdelay - base_delay)};
|
|
max_delay = maxu(max_delay, maxu(impres[c].ldelay, impres[c].rdelay) - base_delay);
|
|
|
|
for(size_t i{0u};i < mChannels.size();++i)
|
|
{
|
|
const double mult{AmbiMatrix[c][i]};
|
|
const size_t numirs{HrirLength - maxz(ldelay, rdelay)};
|
|
size_t lidx{ldelay}, ridx{rdelay};
|
|
for(size_t j{0};j < numirs;++j)
|
|
{
|
|
tmpres[i][lidx++][0] += hrir[j][0] * mult;
|
|
tmpres[i][ridx++][1] += hrir[j][1] * mult;
|
|
}
|
|
}
|
|
}
|
|
impres.clear();
|
|
|
|
for(size_t i{0u};i < mChannels.size();++i)
|
|
{
|
|
auto copy_arr = [](const double2 &in) noexcept -> float2
|
|
{ return float2{{static_cast<float>(in[0]), static_cast<float>(in[1])}}; };
|
|
std::transform(tmpres[i].cbegin(), tmpres[i].cend(), mChannels[i].mCoeffs.begin(),
|
|
copy_arr);
|
|
}
|
|
tmpres.clear();
|
|
|
|
const uint max_length{minu(hrir_delay_round(max_delay) + irSize, HrirLength)};
|
|
TRACE("New max delay: %.2f, FIR length: %u\n", max_delay/double{HrirDelayFracOne},
|
|
max_length);
|
|
mIrSize = max_length;
|
|
}
|
|
|
|
|
|
namespace {
|
|
|
|
std::unique_ptr<HrtfStore> CreateHrtfStore(uint rate, ushort irSize,
|
|
const al::span<const HrtfStore::Field> fields,
|
|
const al::span<const HrtfStore::Elevation> elevs, const HrirArray *coeffs,
|
|
const ubyte2 *delays, const char *filename)
|
|
{
|
|
const size_t irCount{size_t{elevs.back().azCount} + elevs.back().irOffset};
|
|
size_t total{sizeof(HrtfStore)};
|
|
total = RoundUp(total, alignof(HrtfStore::Field)); /* Align for field infos */
|
|
total += sizeof(std::declval<HrtfStore&>().field[0])*fields.size();
|
|
total = RoundUp(total, alignof(HrtfStore::Elevation)); /* Align for elevation infos */
|
|
total += sizeof(std::declval<HrtfStore&>().elev[0])*elevs.size();
|
|
total = RoundUp(total, 16); /* Align for coefficients using SIMD */
|
|
total += sizeof(std::declval<HrtfStore&>().coeffs[0])*irCount;
|
|
total += sizeof(std::declval<HrtfStore&>().delays[0])*irCount;
|
|
|
|
void *ptr{al_calloc(16, total)};
|
|
std::unique_ptr<HrtfStore> Hrtf{al::construct_at(static_cast<HrtfStore*>(ptr))};
|
|
if(!Hrtf)
|
|
ERR("Out of memory allocating storage for %s.\n", filename);
|
|
else
|
|
{
|
|
InitRef(Hrtf->mRef, 1u);
|
|
Hrtf->sampleRate = rate;
|
|
Hrtf->irSize = irSize;
|
|
Hrtf->fdCount = static_cast<uint>(fields.size());
|
|
|
|
/* Set up pointers to storage following the main HRTF struct. */
|
|
char *base = reinterpret_cast<char*>(Hrtf.get());
|
|
size_t offset{sizeof(HrtfStore)};
|
|
|
|
offset = RoundUp(offset, alignof(HrtfStore::Field)); /* Align for field infos */
|
|
auto field_ = reinterpret_cast<HrtfStore::Field*>(base + offset);
|
|
offset += sizeof(field_[0])*fields.size();
|
|
|
|
offset = RoundUp(offset, alignof(HrtfStore::Elevation)); /* Align for elevation infos */
|
|
auto elev_ = reinterpret_cast<HrtfStore::Elevation*>(base + offset);
|
|
offset += sizeof(elev_[0])*elevs.size();
|
|
|
|
offset = RoundUp(offset, 16); /* Align for coefficients using SIMD */
|
|
auto coeffs_ = reinterpret_cast<HrirArray*>(base + offset);
|
|
offset += sizeof(coeffs_[0])*irCount;
|
|
|
|
auto delays_ = reinterpret_cast<ubyte2*>(base + offset);
|
|
offset += sizeof(delays_[0])*irCount;
|
|
|
|
if(unlikely(offset != total))
|
|
throw std::runtime_error{"HrtfStore allocation size mismatch"};
|
|
|
|
/* Copy input data to storage. */
|
|
std::uninitialized_copy(fields.cbegin(), fields.cend(), field_);
|
|
std::uninitialized_copy(elevs.cbegin(), elevs.cend(), elev_);
|
|
std::uninitialized_copy_n(coeffs, irCount, coeffs_);
|
|
std::uninitialized_copy_n(delays, irCount, delays_);
|
|
|
|
/* Finally, assign the storage pointers. */
|
|
Hrtf->field = field_;
|
|
Hrtf->elev = elev_;
|
|
Hrtf->coeffs = coeffs_;
|
|
Hrtf->delays = delays_;
|
|
}
|
|
|
|
return Hrtf;
|
|
}
|
|
|
|
void MirrorLeftHrirs(const al::span<const HrtfStore::Elevation> elevs, HrirArray *coeffs,
|
|
ubyte2 *delays)
|
|
{
|
|
for(const auto &elev : elevs)
|
|
{
|
|
const ushort evoffset{elev.irOffset};
|
|
const ushort azcount{elev.azCount};
|
|
for(size_t j{0};j < azcount;j++)
|
|
{
|
|
const size_t lidx{evoffset + j};
|
|
const size_t ridx{evoffset + ((azcount-j) % azcount)};
|
|
|
|
const size_t irSize{coeffs[ridx].size()};
|
|
for(size_t k{0};k < irSize;k++)
|
|
coeffs[ridx][k][1] = coeffs[lidx][k][0];
|
|
delays[ridx][1] = delays[lidx][0];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template<size_t num_bits, typename T>
|
|
constexpr std::enable_if_t<std::is_signed<T>::value && num_bits < sizeof(T)*8,
|
|
T> fixsign(T value) noexcept
|
|
{
|
|
constexpr auto signbit = static_cast<T>(1u << (num_bits-1));
|
|
return static_cast<T>((value^signbit) - signbit);
|
|
}
|
|
|
|
template<size_t num_bits, typename T>
|
|
constexpr std::enable_if_t<!std::is_signed<T>::value || num_bits == sizeof(T)*8,
|
|
T> fixsign(T value) noexcept
|
|
{ return value; }
|
|
|
|
template<typename T, size_t num_bits=sizeof(T)*8>
|
|
inline std::enable_if_t<al::endian::native == al::endian::little,
|
|
T> readle(std::istream &data)
|
|
{
|
|
static_assert((num_bits&7) == 0, "num_bits must be a multiple of 8");
|
|
static_assert(num_bits <= sizeof(T)*8, "num_bits is too large for the type");
|
|
|
|
T ret{};
|
|
if(!data.read(reinterpret_cast<char*>(&ret), num_bits/8))
|
|
return static_cast<T>(EOF);
|
|
|
|
return fixsign<num_bits>(ret);
|
|
}
|
|
|
|
template<typename T, size_t num_bits=sizeof(T)*8>
|
|
inline std::enable_if_t<al::endian::native == al::endian::big,
|
|
T> readle(std::istream &data)
|
|
{
|
|
static_assert((num_bits&7) == 0, "num_bits must be a multiple of 8");
|
|
static_assert(num_bits <= sizeof(T)*8, "num_bits is too large for the type");
|
|
|
|
T ret{};
|
|
al::byte b[sizeof(T)]{};
|
|
if(!data.read(reinterpret_cast<char*>(b), num_bits/8))
|
|
return static_cast<T>(EOF);
|
|
std::reverse_copy(std::begin(b), std::end(b), reinterpret_cast<al::byte*>(&ret));
|
|
|
|
return fixsign<num_bits>(ret);
|
|
}
|
|
|
|
template<>
|
|
inline uint8_t readle<uint8_t,8>(std::istream &data)
|
|
{ return static_cast<uint8_t>(data.get()); }
|
|
|
|
|
|
std::unique_ptr<HrtfStore> LoadHrtf00(std::istream &data, const char *filename)
|
|
{
|
|
uint rate{readle<uint32_t>(data)};
|
|
ushort irCount{readle<uint16_t>(data)};
|
|
ushort irSize{readle<uint16_t>(data)};
|
|
ubyte evCount{readle<uint8_t>(data)};
|
|
if(!data || data.eof())
|
|
{
|
|
ERR("Failed reading %s\n", filename);
|
|
return nullptr;
|
|
}
|
|
|
|
if(irSize < MinIrLength || irSize > HrirLength)
|
|
{
|
|
ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize, MinIrLength, HrirLength);
|
|
return nullptr;
|
|
}
|
|
if(evCount < MinEvCount || evCount > MaxEvCount)
|
|
{
|
|
ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
|
|
evCount, MinEvCount, MaxEvCount);
|
|
return nullptr;
|
|
}
|
|
|
|
auto elevs = al::vector<HrtfStore::Elevation>(evCount);
|
|
for(auto &elev : elevs)
|
|
elev.irOffset = readle<uint16_t>(data);
|
|
if(!data || data.eof())
|
|
{
|
|
ERR("Failed reading %s\n", filename);
|
|
return nullptr;
|
|
}
|
|
for(size_t i{1};i < evCount;i++)
|
|
{
|
|
if(elevs[i].irOffset <= elevs[i-1].irOffset)
|
|
{
|
|
ERR("Invalid evOffset: evOffset[%zu]=%d (last=%d)\n", i, elevs[i].irOffset,
|
|
elevs[i-1].irOffset);
|
|
return nullptr;
|
|
}
|
|
}
|
|
if(irCount <= elevs.back().irOffset)
|
|
{
|
|
ERR("Invalid evOffset: evOffset[%zu]=%d (irCount=%d)\n",
|
|
elevs.size()-1, elevs.back().irOffset, irCount);
|
|
return nullptr;
|
|
}
|
|
|
|
for(size_t i{1};i < evCount;i++)
|
|
{
|
|
elevs[i-1].azCount = static_cast<ushort>(elevs[i].irOffset - elevs[i-1].irOffset);
|
|
if(elevs[i-1].azCount < MinAzCount || elevs[i-1].azCount > MaxAzCount)
|
|
{
|
|
ERR("Unsupported azimuth count: azCount[%zd]=%d (%d to %d)\n",
|
|
i-1, elevs[i-1].azCount, MinAzCount, MaxAzCount);
|
|
return nullptr;
|
|
}
|
|
}
|
|
elevs.back().azCount = static_cast<ushort>(irCount - elevs.back().irOffset);
|
|
if(elevs.back().azCount < MinAzCount || elevs.back().azCount > MaxAzCount)
|
|
{
|
|
ERR("Unsupported azimuth count: azCount[%zu]=%d (%d to %d)\n",
|
|
elevs.size()-1, elevs.back().azCount, MinAzCount, MaxAzCount);
|
|
return nullptr;
|
|
}
|
|
|
|
auto coeffs = al::vector<HrirArray>(irCount, HrirArray{});
|
|
auto delays = al::vector<ubyte2>(irCount);
|
|
for(auto &hrir : coeffs)
|
|
{
|
|
for(auto &val : al::span<float2>{hrir.data(), irSize})
|
|
val[0] = readle<int16_t>(data) / 32768.0f;
|
|
}
|
|
for(auto &val : delays)
|
|
val[0] = readle<uint8_t>(data);
|
|
if(!data || data.eof())
|
|
{
|
|
ERR("Failed reading %s\n", filename);
|
|
return nullptr;
|
|
}
|
|
for(size_t i{0};i < irCount;i++)
|
|
{
|
|
if(delays[i][0] > MaxHrirDelay)
|
|
{
|
|
ERR("Invalid delays[%zd]: %d (%d)\n", i, delays[i][0], MaxHrirDelay);
|
|
return nullptr;
|
|
}
|
|
delays[i][0] <<= HrirDelayFracBits;
|
|
}
|
|
|
|
/* Mirror the left ear responses to the right ear. */
|
|
MirrorLeftHrirs({elevs.data(), elevs.size()}, coeffs.data(), delays.data());
|
|
|
|
const HrtfStore::Field field[1]{{0.0f, evCount}};
|
|
return CreateHrtfStore(rate, irSize, field, {elevs.data(), elevs.size()}, coeffs.data(),
|
|
delays.data(), filename);
|
|
}
|
|
|
|
std::unique_ptr<HrtfStore> LoadHrtf01(std::istream &data, const char *filename)
|
|
{
|
|
uint rate{readle<uint32_t>(data)};
|
|
ushort irSize{readle<uint8_t>(data)};
|
|
ubyte evCount{readle<uint8_t>(data)};
|
|
if(!data || data.eof())
|
|
{
|
|
ERR("Failed reading %s\n", filename);
|
|
return nullptr;
|
|
}
|
|
|
|
if(irSize < MinIrLength || irSize > HrirLength)
|
|
{
|
|
ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize, MinIrLength, HrirLength);
|
|
return nullptr;
|
|
}
|
|
if(evCount < MinEvCount || evCount > MaxEvCount)
|
|
{
|
|
ERR("Unsupported elevation count: evCount=%d (%d to %d)\n",
|
|
evCount, MinEvCount, MaxEvCount);
|
|
return nullptr;
|
|
}
|
|
|
|
auto elevs = al::vector<HrtfStore::Elevation>(evCount);
|
|
for(auto &elev : elevs)
|
|
elev.azCount = readle<uint8_t>(data);
|
|
if(!data || data.eof())
|
|
{
|
|
ERR("Failed reading %s\n", filename);
|
|
return nullptr;
|
|
}
|
|
for(size_t i{0};i < evCount;++i)
|
|
{
|
|
if(elevs[i].azCount < MinAzCount || elevs[i].azCount > MaxAzCount)
|
|
{
|
|
ERR("Unsupported azimuth count: azCount[%zd]=%d (%d to %d)\n", i, elevs[i].azCount,
|
|
MinAzCount, MaxAzCount);
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
elevs[0].irOffset = 0;
|
|
for(size_t i{1};i < evCount;i++)
|
|
elevs[i].irOffset = static_cast<ushort>(elevs[i-1].irOffset + elevs[i-1].azCount);
|
|
const ushort irCount{static_cast<ushort>(elevs.back().irOffset + elevs.back().azCount)};
|
|
|
|
auto coeffs = al::vector<HrirArray>(irCount, HrirArray{});
|
|
auto delays = al::vector<ubyte2>(irCount);
|
|
for(auto &hrir : coeffs)
|
|
{
|
|
for(auto &val : al::span<float2>{hrir.data(), irSize})
|
|
val[0] = readle<int16_t>(data) / 32768.0f;
|
|
}
|
|
for(auto &val : delays)
|
|
val[0] = readle<uint8_t>(data);
|
|
if(!data || data.eof())
|
|
{
|
|
ERR("Failed reading %s\n", filename);
|
|
return nullptr;
|
|
}
|
|
for(size_t i{0};i < irCount;i++)
|
|
{
|
|
if(delays[i][0] > MaxHrirDelay)
|
|
{
|
|
ERR("Invalid delays[%zd]: %d (%d)\n", i, delays[i][0], MaxHrirDelay);
|
|
return nullptr;
|
|
}
|
|
delays[i][0] <<= HrirDelayFracBits;
|
|
}
|
|
|
|
/* Mirror the left ear responses to the right ear. */
|
|
MirrorLeftHrirs({elevs.data(), elevs.size()}, coeffs.data(), delays.data());
|
|
|
|
const HrtfStore::Field field[1]{{0.0f, evCount}};
|
|
return CreateHrtfStore(rate, irSize, field, {elevs.data(), elevs.size()}, coeffs.data(),
|
|
delays.data(), filename);
|
|
}
|
|
|
|
std::unique_ptr<HrtfStore> LoadHrtf02(std::istream &data, const char *filename)
|
|
{
|
|
constexpr ubyte SampleType_S16{0};
|
|
constexpr ubyte SampleType_S24{1};
|
|
constexpr ubyte ChanType_LeftOnly{0};
|
|
constexpr ubyte ChanType_LeftRight{1};
|
|
|
|
uint rate{readle<uint32_t>(data)};
|
|
ubyte sampleType{readle<uint8_t>(data)};
|
|
ubyte channelType{readle<uint8_t>(data)};
|
|
ushort irSize{readle<uint8_t>(data)};
|
|
ubyte fdCount{readle<uint8_t>(data)};
|
|
if(!data || data.eof())
|
|
{
|
|
ERR("Failed reading %s\n", filename);
|
|
return nullptr;
|
|
}
|
|
|
|
if(sampleType > SampleType_S24)
|
|
{
|
|
ERR("Unsupported sample type: %d\n", sampleType);
|
|
return nullptr;
|
|
}
|
|
if(channelType > ChanType_LeftRight)
|
|
{
|
|
ERR("Unsupported channel type: %d\n", channelType);
|
|
return nullptr;
|
|
}
|
|
|
|
if(irSize < MinIrLength || irSize > HrirLength)
|
|
{
|
|
ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize, MinIrLength, HrirLength);
|
|
return nullptr;
|
|
}
|
|
if(fdCount < 1 || fdCount > MaxFdCount)
|
|
{
|
|
ERR("Unsupported number of field-depths: fdCount=%d (%d to %d)\n", fdCount, MinFdCount,
|
|
MaxFdCount);
|
|
return nullptr;
|
|
}
|
|
|
|
auto fields = al::vector<HrtfStore::Field>(fdCount);
|
|
auto elevs = al::vector<HrtfStore::Elevation>{};
|
|
for(size_t f{0};f < fdCount;f++)
|
|
{
|
|
const ushort distance{readle<uint16_t>(data)};
|
|
const ubyte evCount{readle<uint8_t>(data)};
|
|
if(!data || data.eof())
|
|
{
|
|
ERR("Failed reading %s\n", filename);
|
|
return nullptr;
|
|
}
|
|
|
|
if(distance < MinFdDistance || distance > MaxFdDistance)
|
|
{
|
|
ERR("Unsupported field distance[%zu]=%d (%d to %d millimeters)\n", f, distance,
|
|
MinFdDistance, MaxFdDistance);
|
|
return nullptr;
|
|
}
|
|
if(evCount < MinEvCount || evCount > MaxEvCount)
|
|
{
|
|
ERR("Unsupported elevation count: evCount[%zu]=%d (%d to %d)\n", f, evCount,
|
|
MinEvCount, MaxEvCount);
|
|
return nullptr;
|
|
}
|
|
|
|
fields[f].distance = distance / 1000.0f;
|
|
fields[f].evCount = evCount;
|
|
if(f > 0 && fields[f].distance <= fields[f-1].distance)
|
|
{
|
|
ERR("Field distance[%zu] is not after previous (%f > %f)\n", f, fields[f].distance,
|
|
fields[f-1].distance);
|
|
return nullptr;
|
|
}
|
|
|
|
const size_t ebase{elevs.size()};
|
|
elevs.resize(ebase + evCount);
|
|
for(auto &elev : al::span<HrtfStore::Elevation>(elevs.data()+ebase, evCount))
|
|
elev.azCount = readle<uint8_t>(data);
|
|
if(!data || data.eof())
|
|
{
|
|
ERR("Failed reading %s\n", filename);
|
|
return nullptr;
|
|
}
|
|
|
|
for(size_t e{0};e < evCount;e++)
|
|
{
|
|
if(elevs[ebase+e].azCount < MinAzCount || elevs[ebase+e].azCount > MaxAzCount)
|
|
{
|
|
ERR("Unsupported azimuth count: azCount[%zu][%zu]=%d (%d to %d)\n", f, e,
|
|
elevs[ebase+e].azCount, MinAzCount, MaxAzCount);
|
|
return nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
elevs[0].irOffset = 0;
|
|
std::partial_sum(elevs.cbegin(), elevs.cend(), elevs.begin(),
|
|
[](const HrtfStore::Elevation &last, const HrtfStore::Elevation &cur)
|
|
-> HrtfStore::Elevation
|
|
{
|
|
return HrtfStore::Elevation{cur.azCount,
|
|
static_cast<ushort>(last.azCount + last.irOffset)};
|
|
});
|
|
const auto irTotal = static_cast<ushort>(elevs.back().azCount + elevs.back().irOffset);
|
|
|
|
auto coeffs = al::vector<HrirArray>(irTotal, HrirArray{});
|
|
auto delays = al::vector<ubyte2>(irTotal);
|
|
if(channelType == ChanType_LeftOnly)
|
|
{
|
|
if(sampleType == SampleType_S16)
|
|
{
|
|
for(auto &hrir : coeffs)
|
|
{
|
|
for(auto &val : al::span<float2>{hrir.data(), irSize})
|
|
val[0] = readle<int16_t>(data) / 32768.0f;
|
|
}
|
|
}
|
|
else if(sampleType == SampleType_S24)
|
|
{
|
|
for(auto &hrir : coeffs)
|
|
{
|
|
for(auto &val : al::span<float2>{hrir.data(), irSize})
|
|
val[0] = static_cast<float>(readle<int,24>(data)) / 8388608.0f;
|
|
}
|
|
}
|
|
for(auto &val : delays)
|
|
val[0] = readle<uint8_t>(data);
|
|
if(!data || data.eof())
|
|
{
|
|
ERR("Failed reading %s\n", filename);
|
|
return nullptr;
|
|
}
|
|
for(size_t i{0};i < irTotal;++i)
|
|
{
|
|
if(delays[i][0] > MaxHrirDelay)
|
|
{
|
|
ERR("Invalid delays[%zu][0]: %d (%d)\n", i, delays[i][0], MaxHrirDelay);
|
|
return nullptr;
|
|
}
|
|
delays[i][0] <<= HrirDelayFracBits;
|
|
}
|
|
|
|
/* Mirror the left ear responses to the right ear. */
|
|
MirrorLeftHrirs({elevs.data(), elevs.size()}, coeffs.data(), delays.data());
|
|
}
|
|
else if(channelType == ChanType_LeftRight)
|
|
{
|
|
if(sampleType == SampleType_S16)
|
|
{
|
|
for(auto &hrir : coeffs)
|
|
{
|
|
for(auto &val : al::span<float2>{hrir.data(), irSize})
|
|
{
|
|
val[0] = readle<int16_t>(data) / 32768.0f;
|
|
val[1] = readle<int16_t>(data) / 32768.0f;
|
|
}
|
|
}
|
|
}
|
|
else if(sampleType == SampleType_S24)
|
|
{
|
|
for(auto &hrir : coeffs)
|
|
{
|
|
for(auto &val : al::span<float2>{hrir.data(), irSize})
|
|
{
|
|
val[0] = static_cast<float>(readle<int,24>(data)) / 8388608.0f;
|
|
val[1] = static_cast<float>(readle<int,24>(data)) / 8388608.0f;
|
|
}
|
|
}
|
|
}
|
|
for(auto &val : delays)
|
|
{
|
|
val[0] = readle<uint8_t>(data);
|
|
val[1] = readle<uint8_t>(data);
|
|
}
|
|
if(!data || data.eof())
|
|
{
|
|
ERR("Failed reading %s\n", filename);
|
|
return nullptr;
|
|
}
|
|
|
|
for(size_t i{0};i < irTotal;++i)
|
|
{
|
|
if(delays[i][0] > MaxHrirDelay)
|
|
{
|
|
ERR("Invalid delays[%zu][0]: %d (%d)\n", i, delays[i][0], MaxHrirDelay);
|
|
return nullptr;
|
|
}
|
|
if(delays[i][1] > MaxHrirDelay)
|
|
{
|
|
ERR("Invalid delays[%zu][1]: %d (%d)\n", i, delays[i][1], MaxHrirDelay);
|
|
return nullptr;
|
|
}
|
|
delays[i][0] <<= HrirDelayFracBits;
|
|
delays[i][1] <<= HrirDelayFracBits;
|
|
}
|
|
}
|
|
|
|
if(fdCount > 1)
|
|
{
|
|
auto fields_ = al::vector<HrtfStore::Field>(fields.size());
|
|
auto elevs_ = al::vector<HrtfStore::Elevation>(elevs.size());
|
|
auto coeffs_ = al::vector<HrirArray>(coeffs.size());
|
|
auto delays_ = al::vector<ubyte2>(delays.size());
|
|
|
|
/* Simple reverse for the per-field elements. */
|
|
std::reverse_copy(fields.cbegin(), fields.cend(), fields_.begin());
|
|
|
|
/* Each field has a group of elevations, which each have an azimuth
|
|
* count. Reverse the order of the groups, keeping the relative order
|
|
* of per-group azimuth counts.
|
|
*/
|
|
auto elevs__end = elevs_.end();
|
|
auto copy_azs = [&elevs,&elevs__end](const ptrdiff_t ebase, const HrtfStore::Field &field)
|
|
-> ptrdiff_t
|
|
{
|
|
auto elevs_src = elevs.begin()+ebase;
|
|
elevs__end = std::copy_backward(elevs_src, elevs_src+field.evCount, elevs__end);
|
|
return ebase + field.evCount;
|
|
};
|
|
(void)std::accumulate(fields.cbegin(), fields.cend(), ptrdiff_t{0}, copy_azs);
|
|
assert(elevs_.begin() == elevs__end);
|
|
|
|
/* Reestablish the IR offset for each elevation index, given the new
|
|
* ordering of elevations.
|
|
*/
|
|
elevs_[0].irOffset = 0;
|
|
std::partial_sum(elevs_.cbegin(), elevs_.cend(), elevs_.begin(),
|
|
[](const HrtfStore::Elevation &last, const HrtfStore::Elevation &cur)
|
|
-> HrtfStore::Elevation
|
|
{
|
|
return HrtfStore::Elevation{cur.azCount,
|
|
static_cast<ushort>(last.azCount + last.irOffset)};
|
|
});
|
|
|
|
/* Reverse the order of each field's group of IRs. */
|
|
auto coeffs_end = coeffs_.end();
|
|
auto delays_end = delays_.end();
|
|
auto copy_irs = [&elevs,&coeffs,&delays,&coeffs_end,&delays_end](
|
|
const ptrdiff_t ebase, const HrtfStore::Field &field) -> ptrdiff_t
|
|
{
|
|
auto accum_az = [](int count, const HrtfStore::Elevation &elev) noexcept -> int
|
|
{ return count + elev.azCount; };
|
|
const auto elevs_mid = elevs.cbegin() + ebase;
|
|
const auto elevs_end = elevs_mid + field.evCount;
|
|
const int abase{std::accumulate(elevs.cbegin(), elevs_mid, 0, accum_az)};
|
|
const int num_azs{std::accumulate(elevs_mid, elevs_end, 0, accum_az)};
|
|
|
|
coeffs_end = std::copy_backward(coeffs.cbegin() + abase,
|
|
coeffs.cbegin() + (abase+num_azs), coeffs_end);
|
|
delays_end = std::copy_backward(delays.cbegin() + abase,
|
|
delays.cbegin() + (abase+num_azs), delays_end);
|
|
|
|
return ebase + field.evCount;
|
|
};
|
|
(void)std::accumulate(fields.cbegin(), fields.cend(), ptrdiff_t{0}, copy_irs);
|
|
assert(coeffs_.begin() == coeffs_end);
|
|
assert(delays_.begin() == delays_end);
|
|
|
|
fields = std::move(fields_);
|
|
elevs = std::move(elevs_);
|
|
coeffs = std::move(coeffs_);
|
|
delays = std::move(delays_);
|
|
}
|
|
|
|
return CreateHrtfStore(rate, irSize, {fields.data(), fields.size()},
|
|
{elevs.data(), elevs.size()}, coeffs.data(), delays.data(), filename);
|
|
}
|
|
|
|
std::unique_ptr<HrtfStore> LoadHrtf03(std::istream &data, const char *filename)
|
|
{
|
|
constexpr ubyte ChanType_LeftOnly{0};
|
|
constexpr ubyte ChanType_LeftRight{1};
|
|
|
|
uint rate{readle<uint32_t>(data)};
|
|
ubyte channelType{readle<uint8_t>(data)};
|
|
ushort irSize{readle<uint8_t>(data)};
|
|
ubyte fdCount{readle<uint8_t>(data)};
|
|
if(!data || data.eof())
|
|
{
|
|
ERR("Failed reading %s\n", filename);
|
|
return nullptr;
|
|
}
|
|
|
|
if(channelType > ChanType_LeftRight)
|
|
{
|
|
ERR("Unsupported channel type: %d\n", channelType);
|
|
return nullptr;
|
|
}
|
|
|
|
if(irSize < MinIrLength || irSize > HrirLength)
|
|
{
|
|
ERR("Unsupported HRIR size, irSize=%d (%d to %d)\n", irSize, MinIrLength, HrirLength);
|
|
return nullptr;
|
|
}
|
|
if(fdCount < 1 || fdCount > MaxFdCount)
|
|
{
|
|
ERR("Unsupported number of field-depths: fdCount=%d (%d to %d)\n", fdCount, MinFdCount,
|
|
MaxFdCount);
|
|
return nullptr;
|
|
}
|
|
|
|
auto fields = al::vector<HrtfStore::Field>(fdCount);
|
|
auto elevs = al::vector<HrtfStore::Elevation>{};
|
|
for(size_t f{0};f < fdCount;f++)
|
|
{
|
|
const ushort distance{readle<uint16_t>(data)};
|
|
const ubyte evCount{readle<uint8_t>(data)};
|
|
if(!data || data.eof())
|
|
{
|
|
ERR("Failed reading %s\n", filename);
|
|
return nullptr;
|
|
}
|
|
|
|
if(distance < MinFdDistance || distance > MaxFdDistance)
|
|
{
|
|
ERR("Unsupported field distance[%zu]=%d (%d to %d millimeters)\n", f, distance,
|
|
MinFdDistance, MaxFdDistance);
|
|
return nullptr;
|
|
}
|
|
if(evCount < MinEvCount || evCount > MaxEvCount)
|
|
{
|
|
ERR("Unsupported elevation count: evCount[%zu]=%d (%d to %d)\n", f, evCount,
|
|
MinEvCount, MaxEvCount);
|
|
return nullptr;
|
|
}
|
|
|
|
fields[f].distance = distance / 1000.0f;
|
|
fields[f].evCount = evCount;
|
|
if(f > 0 && fields[f].distance > fields[f-1].distance)
|
|
{
|
|
ERR("Field distance[%zu] is not before previous (%f <= %f)\n", f, fields[f].distance,
|
|
fields[f-1].distance);
|
|
return nullptr;
|
|
}
|
|
|
|
const size_t ebase{elevs.size()};
|
|
elevs.resize(ebase + evCount);
|
|
for(auto &elev : al::span<HrtfStore::Elevation>(elevs.data()+ebase, evCount))
|
|
elev.azCount = readle<uint8_t>(data);
|
|
if(!data || data.eof())
|
|
{
|
|
ERR("Failed reading %s\n", filename);
|
|
return nullptr;
|
|
}
|
|
|
|
for(size_t e{0};e < evCount;e++)
|
|
{
|
|
if(elevs[ebase+e].azCount < MinAzCount || elevs[ebase+e].azCount > MaxAzCount)
|
|
{
|
|
ERR("Unsupported azimuth count: azCount[%zu][%zu]=%d (%d to %d)\n", f, e,
|
|
elevs[ebase+e].azCount, MinAzCount, MaxAzCount);
|
|
return nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
elevs[0].irOffset = 0;
|
|
std::partial_sum(elevs.cbegin(), elevs.cend(), elevs.begin(),
|
|
[](const HrtfStore::Elevation &last, const HrtfStore::Elevation &cur)
|
|
-> HrtfStore::Elevation
|
|
{
|
|
return HrtfStore::Elevation{cur.azCount,
|
|
static_cast<ushort>(last.azCount + last.irOffset)};
|
|
});
|
|
const auto irTotal = static_cast<ushort>(elevs.back().azCount + elevs.back().irOffset);
|
|
|
|
auto coeffs = al::vector<HrirArray>(irTotal, HrirArray{});
|
|
auto delays = al::vector<ubyte2>(irTotal);
|
|
if(channelType == ChanType_LeftOnly)
|
|
{
|
|
for(auto &hrir : coeffs)
|
|
{
|
|
for(auto &val : al::span<float2>{hrir.data(), irSize})
|
|
val[0] = static_cast<float>(readle<int,24>(data)) / 8388608.0f;
|
|
}
|
|
for(auto &val : delays)
|
|
val[0] = readle<uint8_t>(data);
|
|
if(!data || data.eof())
|
|
{
|
|
ERR("Failed reading %s\n", filename);
|
|
return nullptr;
|
|
}
|
|
for(size_t i{0};i < irTotal;++i)
|
|
{
|
|
if(delays[i][0] > MaxHrirDelay<<HrirDelayFracBits)
|
|
{
|
|
ERR("Invalid delays[%zu][0]: %f (%d)\n", i,
|
|
delays[i][0] / float{HrirDelayFracOne}, MaxHrirDelay);
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
/* Mirror the left ear responses to the right ear. */
|
|
MirrorLeftHrirs({elevs.data(), elevs.size()}, coeffs.data(), delays.data());
|
|
}
|
|
else if(channelType == ChanType_LeftRight)
|
|
{
|
|
for(auto &hrir : coeffs)
|
|
{
|
|
for(auto &val : al::span<float2>{hrir.data(), irSize})
|
|
{
|
|
val[0] = static_cast<float>(readle<int,24>(data)) / 8388608.0f;
|
|
val[1] = static_cast<float>(readle<int,24>(data)) / 8388608.0f;
|
|
}
|
|
}
|
|
for(auto &val : delays)
|
|
{
|
|
val[0] = readle<uint8_t>(data);
|
|
val[1] = readle<uint8_t>(data);
|
|
}
|
|
if(!data || data.eof())
|
|
{
|
|
ERR("Failed reading %s\n", filename);
|
|
return nullptr;
|
|
}
|
|
|
|
for(size_t i{0};i < irTotal;++i)
|
|
{
|
|
if(delays[i][0] > MaxHrirDelay<<HrirDelayFracBits)
|
|
{
|
|
ERR("Invalid delays[%zu][0]: %f (%d)\n", i,
|
|
delays[i][0] / float{HrirDelayFracOne}, MaxHrirDelay);
|
|
return nullptr;
|
|
}
|
|
if(delays[i][1] > MaxHrirDelay<<HrirDelayFracBits)
|
|
{
|
|
ERR("Invalid delays[%zu][1]: %f (%d)\n", i,
|
|
delays[i][1] / float{HrirDelayFracOne}, MaxHrirDelay);
|
|
return nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
return CreateHrtfStore(rate, irSize, {fields.data(), fields.size()},
|
|
{elevs.data(), elevs.size()}, coeffs.data(), delays.data(), filename);
|
|
}
|
|
|
|
|
|
bool checkName(const std::string &name)
|
|
{
|
|
auto match_name = [&name](const HrtfEntry &entry) -> bool { return name == entry.mDispName; };
|
|
auto &enum_names = EnumeratedHrtfs;
|
|
return std::find_if(enum_names.cbegin(), enum_names.cend(), match_name) != enum_names.cend();
|
|
}
|
|
|
|
void AddFileEntry(const std::string &filename)
|
|
{
|
|
/* Check if this file has already been enumerated. */
|
|
auto enum_iter = std::find_if(EnumeratedHrtfs.cbegin(), EnumeratedHrtfs.cend(),
|
|
[&filename](const HrtfEntry &entry) -> bool
|
|
{ return entry.mFilename == filename; });
|
|
if(enum_iter != EnumeratedHrtfs.cend())
|
|
{
|
|
TRACE("Skipping duplicate file entry %s\n", filename.c_str());
|
|
return;
|
|
}
|
|
|
|
/* TODO: Get a human-readable name from the HRTF data (possibly coming in a
|
|
* format update). */
|
|
size_t namepos{filename.find_last_of('/')+1};
|
|
if(!namepos) namepos = filename.find_last_of('\\')+1;
|
|
|
|
size_t extpos{filename.find_last_of('.')};
|
|
if(extpos <= namepos) extpos = std::string::npos;
|
|
|
|
const std::string basename{(extpos == std::string::npos) ?
|
|
filename.substr(namepos) : filename.substr(namepos, extpos-namepos)};
|
|
std::string newname{basename};
|
|
int count{1};
|
|
while(checkName(newname))
|
|
{
|
|
newname = basename;
|
|
newname += " #";
|
|
newname += std::to_string(++count);
|
|
}
|
|
EnumeratedHrtfs.emplace_back(HrtfEntry{newname, filename});
|
|
const HrtfEntry &entry = EnumeratedHrtfs.back();
|
|
|
|
TRACE("Adding file entry \"%s\"\n", entry.mFilename.c_str());
|
|
}
|
|
|
|
/* Unfortunate that we have to duplicate AddFileEntry to take a memory buffer
|
|
* for input instead of opening the given filename.
|
|
*/
|
|
void AddBuiltInEntry(const std::string &dispname, uint residx)
|
|
{
|
|
const std::string filename{'!'+std::to_string(residx)+'_'+dispname};
|
|
|
|
auto enum_iter = std::find_if(EnumeratedHrtfs.cbegin(), EnumeratedHrtfs.cend(),
|
|
[&filename](const HrtfEntry &entry) -> bool
|
|
{ return entry.mFilename == filename; });
|
|
if(enum_iter != EnumeratedHrtfs.cend())
|
|
{
|
|
TRACE("Skipping duplicate file entry %s\n", filename.c_str());
|
|
return;
|
|
}
|
|
|
|
/* TODO: Get a human-readable name from the HRTF data (possibly coming in a
|
|
* format update). */
|
|
|
|
std::string newname{dispname};
|
|
int count{1};
|
|
while(checkName(newname))
|
|
{
|
|
newname = dispname;
|
|
newname += " #";
|
|
newname += std::to_string(++count);
|
|
}
|
|
EnumeratedHrtfs.emplace_back(HrtfEntry{newname, filename});
|
|
const HrtfEntry &entry = EnumeratedHrtfs.back();
|
|
|
|
TRACE("Adding built-in entry \"%s\"\n", entry.mFilename.c_str());
|
|
}
|
|
|
|
|
|
#define IDR_DEFAULT_HRTF_MHR 1
|
|
|
|
#ifndef ALSOFT_EMBED_HRTF_DATA
|
|
|
|
al::span<const char> GetResource(int /*name*/)
|
|
{ return {}; }
|
|
|
|
#else
|
|
|
|
#include "hrtf_default.h"
|
|
|
|
al::span<const char> GetResource(int name)
|
|
{
|
|
if(name == IDR_DEFAULT_HRTF_MHR)
|
|
return {reinterpret_cast<const char*>(hrtf_default), sizeof(hrtf_default)};
|
|
return {};
|
|
}
|
|
#endif
|
|
|
|
} // namespace
|
|
|
|
|
|
al::vector<std::string> EnumerateHrtf(al::optional<std::string> pathopt)
|
|
{
|
|
std::lock_guard<std::mutex> _{EnumeratedHrtfLock};
|
|
EnumeratedHrtfs.clear();
|
|
|
|
bool usedefaults{true};
|
|
if(pathopt)
|
|
{
|
|
const char *pathlist{pathopt->c_str()};
|
|
while(pathlist && *pathlist)
|
|
{
|
|
const char *next, *end;
|
|
|
|
while(isspace(*pathlist) || *pathlist == ',')
|
|
pathlist++;
|
|
if(*pathlist == '\0')
|
|
continue;
|
|
|
|
next = strchr(pathlist, ',');
|
|
if(next)
|
|
end = next++;
|
|
else
|
|
{
|
|
end = pathlist + strlen(pathlist);
|
|
usedefaults = false;
|
|
}
|
|
|
|
while(end != pathlist && isspace(*(end-1)))
|
|
--end;
|
|
if(end != pathlist)
|
|
{
|
|
const std::string pname{pathlist, end};
|
|
for(const auto &fname : SearchDataFiles(".mhr", pname.c_str()))
|
|
AddFileEntry(fname);
|
|
}
|
|
|
|
pathlist = next;
|
|
}
|
|
}
|
|
|
|
if(usedefaults)
|
|
{
|
|
for(const auto &fname : SearchDataFiles(".mhr", "openal/hrtf"))
|
|
AddFileEntry(fname);
|
|
|
|
if(!GetResource(IDR_DEFAULT_HRTF_MHR).empty())
|
|
AddBuiltInEntry("Built-In HRTF", IDR_DEFAULT_HRTF_MHR);
|
|
}
|
|
|
|
al::vector<std::string> list;
|
|
list.reserve(EnumeratedHrtfs.size());
|
|
for(auto &entry : EnumeratedHrtfs)
|
|
list.emplace_back(entry.mDispName);
|
|
|
|
return list;
|
|
}
|
|
|
|
HrtfStorePtr GetLoadedHrtf(const std::string &name, const uint devrate)
|
|
{
|
|
std::lock_guard<std::mutex> _{EnumeratedHrtfLock};
|
|
auto entry_iter = std::find_if(EnumeratedHrtfs.cbegin(), EnumeratedHrtfs.cend(),
|
|
[&name](const HrtfEntry &entry) -> bool { return entry.mDispName == name; });
|
|
if(entry_iter == EnumeratedHrtfs.cend())
|
|
return nullptr;
|
|
const std::string &fname = entry_iter->mFilename;
|
|
|
|
std::lock_guard<std::mutex> __{LoadedHrtfLock};
|
|
auto hrtf_lt_fname = [](LoadedHrtf &hrtf, const std::string &filename) -> bool
|
|
{ return hrtf.mFilename < filename; };
|
|
auto handle = std::lower_bound(LoadedHrtfs.begin(), LoadedHrtfs.end(), fname, hrtf_lt_fname);
|
|
while(handle != LoadedHrtfs.end() && handle->mFilename == fname)
|
|
{
|
|
HrtfStore *hrtf{handle->mEntry.get()};
|
|
if(hrtf && hrtf->sampleRate == devrate)
|
|
{
|
|
hrtf->add_ref();
|
|
return HrtfStorePtr{hrtf};
|
|
}
|
|
++handle;
|
|
}
|
|
|
|
std::unique_ptr<std::istream> stream;
|
|
int residx{};
|
|
char ch{};
|
|
if(sscanf(fname.c_str(), "!%d%c", &residx, &ch) == 2 && ch == '_')
|
|
{
|
|
TRACE("Loading %s...\n", fname.c_str());
|
|
al::span<const char> res{GetResource(residx)};
|
|
if(res.empty())
|
|
{
|
|
ERR("Could not get resource %u, %s\n", residx, name.c_str());
|
|
return nullptr;
|
|
}
|
|
stream = std::make_unique<idstream>(res.begin(), res.end());
|
|
}
|
|
else
|
|
{
|
|
TRACE("Loading %s...\n", fname.c_str());
|
|
auto fstr = std::make_unique<al::ifstream>(fname.c_str(), std::ios::binary);
|
|
if(!fstr->is_open())
|
|
{
|
|
ERR("Could not open %s\n", fname.c_str());
|
|
return nullptr;
|
|
}
|
|
stream = std::move(fstr);
|
|
}
|
|
|
|
std::unique_ptr<HrtfStore> hrtf;
|
|
char magic[sizeof(magicMarker03)];
|
|
stream->read(magic, sizeof(magic));
|
|
if(stream->gcount() < static_cast<std::streamsize>(sizeof(magicMarker03)))
|
|
ERR("%s data is too short (%zu bytes)\n", name.c_str(), stream->gcount());
|
|
else if(memcmp(magic, magicMarker03, sizeof(magicMarker03)) == 0)
|
|
{
|
|
TRACE("Detected data set format v3\n");
|
|
hrtf = LoadHrtf03(*stream, name.c_str());
|
|
}
|
|
else if(memcmp(magic, magicMarker02, sizeof(magicMarker02)) == 0)
|
|
{
|
|
TRACE("Detected data set format v2\n");
|
|
hrtf = LoadHrtf02(*stream, name.c_str());
|
|
}
|
|
else if(memcmp(magic, magicMarker01, sizeof(magicMarker01)) == 0)
|
|
{
|
|
TRACE("Detected data set format v1\n");
|
|
hrtf = LoadHrtf01(*stream, name.c_str());
|
|
}
|
|
else if(memcmp(magic, magicMarker00, sizeof(magicMarker00)) == 0)
|
|
{
|
|
TRACE("Detected data set format v0\n");
|
|
hrtf = LoadHrtf00(*stream, name.c_str());
|
|
}
|
|
else
|
|
ERR("Invalid header in %s: \"%.8s\"\n", name.c_str(), magic);
|
|
stream.reset();
|
|
|
|
if(!hrtf)
|
|
{
|
|
ERR("Failed to load %s\n", name.c_str());
|
|
return nullptr;
|
|
}
|
|
|
|
if(hrtf->sampleRate != devrate)
|
|
{
|
|
TRACE("Resampling HRTF %s (%uhz -> %uhz)\n", name.c_str(), hrtf->sampleRate, devrate);
|
|
|
|
/* Calculate the last elevation's index and get the total IR count. */
|
|
const size_t lastEv{std::accumulate(hrtf->field, hrtf->field+hrtf->fdCount, size_t{0},
|
|
[](const size_t curval, const HrtfStore::Field &field) noexcept -> size_t
|
|
{ return curval + field.evCount; }
|
|
) - 1};
|
|
const size_t irCount{size_t{hrtf->elev[lastEv].irOffset} + hrtf->elev[lastEv].azCount};
|
|
|
|
/* Resample all the IRs. */
|
|
std::array<std::array<double,HrirLength>,2> inout;
|
|
PPhaseResampler rs;
|
|
rs.init(hrtf->sampleRate, devrate);
|
|
for(size_t i{0};i < irCount;++i)
|
|
{
|
|
HrirArray &coeffs = const_cast<HrirArray&>(hrtf->coeffs[i]);
|
|
for(size_t j{0};j < 2;++j)
|
|
{
|
|
std::transform(coeffs.cbegin(), coeffs.cend(), inout[0].begin(),
|
|
[j](const float2 &in) noexcept -> double { return in[j]; });
|
|
rs.process(HrirLength, inout[0].data(), HrirLength, inout[1].data());
|
|
for(size_t k{0};k < HrirLength;++k)
|
|
coeffs[k][j] = static_cast<float>(inout[1][k]);
|
|
}
|
|
}
|
|
rs = {};
|
|
|
|
/* Scale the delays for the new sample rate. */
|
|
float max_delay{0.0f};
|
|
auto new_delays = al::vector<float2>(irCount);
|
|
const float rate_scale{static_cast<float>(devrate)/static_cast<float>(hrtf->sampleRate)};
|
|
for(size_t i{0};i < irCount;++i)
|
|
{
|
|
for(size_t j{0};j < 2;++j)
|
|
{
|
|
const float new_delay{std::round(hrtf->delays[i][j] * rate_scale) /
|
|
float{HrirDelayFracOne}};
|
|
max_delay = maxf(max_delay, new_delay);
|
|
new_delays[i][j] = new_delay;
|
|
}
|
|
}
|
|
|
|
/* If the new delays exceed the max, scale it down to fit (essentially
|
|
* shrinking the head radius; not ideal but better than a per-delay
|
|
* clamp).
|
|
*/
|
|
float delay_scale{HrirDelayFracOne};
|
|
if(max_delay > MaxHrirDelay)
|
|
{
|
|
WARN("Resampled delay exceeds max (%.2f > %d)\n", max_delay, MaxHrirDelay);
|
|
delay_scale *= float{MaxHrirDelay} / max_delay;
|
|
}
|
|
|
|
for(size_t i{0};i < irCount;++i)
|
|
{
|
|
ubyte2 &delays = const_cast<ubyte2&>(hrtf->delays[i]);
|
|
for(size_t j{0};j < 2;++j)
|
|
delays[j] = static_cast<ubyte>(float2int(new_delays[i][j]*delay_scale + 0.5f));
|
|
}
|
|
|
|
/* Scale the IR size for the new sample rate and update the stored
|
|
* sample rate.
|
|
*/
|
|
const float newIrSize{std::round(static_cast<float>(hrtf->irSize) * rate_scale)};
|
|
hrtf->irSize = static_cast<uint>(minf(HrirLength, newIrSize));
|
|
hrtf->sampleRate = devrate;
|
|
}
|
|
|
|
TRACE("Loaded HRTF %s for sample rate %uhz, %u-sample filter\n", name.c_str(),
|
|
hrtf->sampleRate, hrtf->irSize);
|
|
handle = LoadedHrtfs.emplace(handle, LoadedHrtf{fname, std::move(hrtf)});
|
|
|
|
return HrtfStorePtr{handle->mEntry.get()};
|
|
}
|
|
|
|
|
|
void HrtfStore::add_ref()
|
|
{
|
|
auto ref = IncrementRef(mRef);
|
|
TRACE("HrtfStore %p increasing refcount to %u\n", decltype(std::declval<void*>()){this}, ref);
|
|
}
|
|
|
|
void HrtfStore::release()
|
|
{
|
|
auto ref = DecrementRef(mRef);
|
|
TRACE("HrtfStore %p decreasing refcount to %u\n", decltype(std::declval<void*>()){this}, ref);
|
|
if(ref == 0)
|
|
{
|
|
std::lock_guard<std::mutex> _{LoadedHrtfLock};
|
|
|
|
/* Go through and remove all unused HRTFs. */
|
|
auto remove_unused = [](LoadedHrtf &hrtf) -> bool
|
|
{
|
|
HrtfStore *entry{hrtf.mEntry.get()};
|
|
if(entry && ReadRef(entry->mRef) == 0)
|
|
{
|
|
TRACE("Unloading unused HRTF %s\n", hrtf.mFilename.data());
|
|
hrtf.mEntry = nullptr;
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
auto iter = std::remove_if(LoadedHrtfs.begin(), LoadedHrtfs.end(), remove_unused);
|
|
LoadedHrtfs.erase(iter, LoadedHrtfs.end());
|
|
}
|
|
}
|