axmol/thirdparty/openal/core/mixer/mixer_sse.cpp

273 lines
9.6 KiB
C++

#include "config.h"
#include <xmmintrin.h>
#include <cmath>
#include <limits>
#include "alnumeric.h"
#include "core/bsinc_defs.h"
#include "defs.h"
#include "hrtfbase.h"
struct SSETag;
struct BSincTag;
struct FastBSincTag;
#if defined(__GNUC__) && !defined(__clang__) && !defined(__SSE__)
#pragma GCC target("sse")
#endif
namespace {
constexpr uint FracPhaseBitDiff{MixerFracBits - BSincPhaseBits};
constexpr uint FracPhaseDiffOne{1 << FracPhaseBitDiff};
#define MLA4(x, y, z) _mm_add_ps(x, _mm_mul_ps(y, z))
inline void ApplyCoeffs(float2 *RESTRICT Values, const size_t IrSize, const ConstHrirSpan Coeffs,
const float left, const float right)
{
const __m128 lrlr{_mm_setr_ps(left, right, left, right)};
ASSUME(IrSize >= MinIrLength);
/* This isn't technically correct to test alignment, but it's true for
* systems that support SSE, which is the only one that needs to know the
* alignment of Values (which alternates between 8- and 16-byte aligned).
*/
if(!(reinterpret_cast<uintptr_t>(Values)&15))
{
for(size_t i{0};i < IrSize;i += 2)
{
const __m128 coeffs{_mm_load_ps(&Coeffs[i][0])};
__m128 vals{_mm_load_ps(&Values[i][0])};
vals = MLA4(vals, lrlr, coeffs);
_mm_store_ps(&Values[i][0], vals);
}
}
else
{
__m128 imp0, imp1;
__m128 coeffs{_mm_load_ps(&Coeffs[0][0])};
__m128 vals{_mm_loadl_pi(_mm_setzero_ps(), reinterpret_cast<__m64*>(&Values[0][0]))};
imp0 = _mm_mul_ps(lrlr, coeffs);
vals = _mm_add_ps(imp0, vals);
_mm_storel_pi(reinterpret_cast<__m64*>(&Values[0][0]), vals);
size_t td{((IrSize+1)>>1) - 1};
size_t i{1};
do {
coeffs = _mm_load_ps(&Coeffs[i+1][0]);
vals = _mm_load_ps(&Values[i][0]);
imp1 = _mm_mul_ps(lrlr, coeffs);
imp0 = _mm_shuffle_ps(imp0, imp1, _MM_SHUFFLE(1, 0, 3, 2));
vals = _mm_add_ps(imp0, vals);
_mm_store_ps(&Values[i][0], vals);
imp0 = imp1;
i += 2;
} while(--td);
vals = _mm_loadl_pi(vals, reinterpret_cast<__m64*>(&Values[i][0]));
imp0 = _mm_movehl_ps(imp0, imp0);
vals = _mm_add_ps(imp0, vals);
_mm_storel_pi(reinterpret_cast<__m64*>(&Values[i][0]), vals);
}
}
} // namespace
template<>
float *Resample_<BSincTag,SSETag>(const InterpState *state, float *RESTRICT src, uint frac,
uint increment, const al::span<float> dst)
{
const float *const filter{state->bsinc.filter};
const __m128 sf4{_mm_set1_ps(state->bsinc.sf)};
const size_t m{state->bsinc.m};
ASSUME(m > 0);
src -= state->bsinc.l;
for(float &out_sample : dst)
{
// Calculate the phase index and factor.
const uint pi{frac >> FracPhaseBitDiff};
const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)};
// Apply the scale and phase interpolated filter.
__m128 r4{_mm_setzero_ps()};
{
const __m128 pf4{_mm_set1_ps(pf)};
const float *RESTRICT fil{filter + m*pi*2};
const float *RESTRICT phd{fil + m};
const float *RESTRICT scd{fil + BSincPhaseCount*2*m};
const float *RESTRICT spd{scd + m};
size_t td{m >> 2};
size_t j{0u};
do {
/* f = ((fil + sf*scd) + pf*(phd + sf*spd)) */
const __m128 f4 = MLA4(
MLA4(_mm_load_ps(&fil[j]), sf4, _mm_load_ps(&scd[j])),
pf4, MLA4(_mm_load_ps(&phd[j]), sf4, _mm_load_ps(&spd[j])));
/* r += f*src */
r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j]));
j += 4;
} while(--td);
}
r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
out_sample = _mm_cvtss_f32(r4);
frac += increment;
src += frac>>MixerFracBits;
frac &= MixerFracMask;
}
return dst.data();
}
template<>
float *Resample_<FastBSincTag,SSETag>(const InterpState *state, float *RESTRICT src, uint frac,
uint increment, const al::span<float> dst)
{
const float *const filter{state->bsinc.filter};
const size_t m{state->bsinc.m};
ASSUME(m > 0);
src -= state->bsinc.l;
for(float &out_sample : dst)
{
// Calculate the phase index and factor.
const uint pi{frac >> FracPhaseBitDiff};
const float pf{static_cast<float>(frac & (FracPhaseDiffOne-1)) * (1.0f/FracPhaseDiffOne)};
// Apply the phase interpolated filter.
__m128 r4{_mm_setzero_ps()};
{
const __m128 pf4{_mm_set1_ps(pf)};
const float *RESTRICT fil{filter + m*pi*2};
const float *RESTRICT phd{fil + m};
size_t td{m >> 2};
size_t j{0u};
do {
/* f = fil + pf*phd */
const __m128 f4 = MLA4(_mm_load_ps(&fil[j]), pf4, _mm_load_ps(&phd[j]));
/* r += f*src */
r4 = MLA4(r4, f4, _mm_loadu_ps(&src[j]));
j += 4;
} while(--td);
}
r4 = _mm_add_ps(r4, _mm_shuffle_ps(r4, r4, _MM_SHUFFLE(0, 1, 2, 3)));
r4 = _mm_add_ps(r4, _mm_movehl_ps(r4, r4));
out_sample = _mm_cvtss_f32(r4);
frac += increment;
src += frac>>MixerFracBits;
frac &= MixerFracMask;
}
return dst.data();
}
template<>
void MixHrtf_<SSETag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
const MixHrtfFilter *hrtfparams, const size_t BufferSize)
{ MixHrtfBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, hrtfparams, BufferSize); }
template<>
void MixHrtfBlend_<SSETag>(const float *InSamples, float2 *AccumSamples, const uint IrSize,
const HrtfFilter *oldparams, const MixHrtfFilter *newparams, const size_t BufferSize)
{
MixHrtfBlendBase<ApplyCoeffs>(InSamples, AccumSamples, IrSize, oldparams, newparams,
BufferSize);
}
template<>
void MixDirectHrtf_<SSETag>(const FloatBufferSpan LeftOut, const FloatBufferSpan RightOut,
const al::span<const FloatBufferLine> InSamples, float2 *AccumSamples,
float *TempBuf, HrtfChannelState *ChanState, const size_t IrSize, const size_t BufferSize)
{
MixDirectHrtfBase<ApplyCoeffs>(LeftOut, RightOut, InSamples, AccumSamples, TempBuf, ChanState,
IrSize, BufferSize);
}
template<>
void Mix_<SSETag>(const al::span<const float> InSamples, const al::span<FloatBufferLine> OutBuffer,
float *CurrentGains, const float *TargetGains, const size_t Counter, const size_t OutPos)
{
const float delta{(Counter > 0) ? 1.0f / static_cast<float>(Counter) : 0.0f};
const auto min_len = minz(Counter, InSamples.size());
const auto aligned_len = minz((min_len+3) & ~size_t{3}, InSamples.size()) - min_len;
for(FloatBufferLine &output : OutBuffer)
{
float *RESTRICT dst{al::assume_aligned<16>(output.data()+OutPos)};
float gain{*CurrentGains};
const float step{(*TargetGains-gain) * delta};
size_t pos{0};
if(!(std::abs(step) > std::numeric_limits<float>::epsilon()))
gain = *TargetGains;
else
{
float step_count{0.0f};
/* Mix with applying gain steps in aligned multiples of 4. */
if(size_t todo{min_len >> 2})
{
const __m128 four4{_mm_set1_ps(4.0f)};
const __m128 step4{_mm_set1_ps(step)};
const __m128 gain4{_mm_set1_ps(gain)};
__m128 step_count4{_mm_setr_ps(0.0f, 1.0f, 2.0f, 3.0f)};
do {
const __m128 val4{_mm_load_ps(&InSamples[pos])};
__m128 dry4{_mm_load_ps(&dst[pos])};
/* dry += val * (gain + step*step_count) */
dry4 = MLA4(dry4, val4, MLA4(gain4, step4, step_count4));
_mm_store_ps(&dst[pos], dry4);
step_count4 = _mm_add_ps(step_count4, four4);
pos += 4;
} while(--todo);
/* NOTE: step_count4 now represents the next four counts after
* the last four mixed samples, so the lowest element
* represents the next step count to apply.
*/
step_count = _mm_cvtss_f32(step_count4);
}
/* Mix with applying left over gain steps that aren't aligned multiples of 4. */
for(size_t leftover{min_len&3};leftover;++pos,--leftover)
{
dst[pos] += InSamples[pos] * (gain + step*step_count);
step_count += 1.0f;
}
if(pos == Counter)
gain = *TargetGains;
else
gain += step*step_count;
/* Mix until pos is aligned with 4 or the mix is done. */
for(size_t leftover{aligned_len&3};leftover;++pos,--leftover)
dst[pos] += InSamples[pos] * gain;
}
*CurrentGains = gain;
++CurrentGains;
++TargetGains;
if(!(std::abs(gain) > GainSilenceThreshold))
continue;
if(size_t todo{(InSamples.size()-pos) >> 2})
{
const __m128 gain4{_mm_set1_ps(gain)};
do {
const __m128 val4{_mm_load_ps(&InSamples[pos])};
__m128 dry4{_mm_load_ps(&dst[pos])};
dry4 = _mm_add_ps(dry4, _mm_mul_ps(val4, gain4));
_mm_store_ps(&dst[pos], dry4);
pos += 4;
} while(--todo);
}
for(size_t leftover{(InSamples.size()-pos)&3};leftover;++pos,--leftover)
dst[pos] += InSamples[pos] * gain;
}
}